Effect of Tank Geometry on Its Average Performance

التفاصيل البيبلوغرافية
Parent link:AIP Conference Proceedings
Vol. 1938 : Isotopes: Technologies, Materials and Application (ITMA-2017).— 2018.— [020009, 7 p.]
مؤلفون مشاركون: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение ядерно-топливного цикла, Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение нефтегазового дела
مؤلفون آخرون: Orlov A. A. Aleksey Alekseevich, Tsimbalyuk A. F. Aleksandr Fedorovich, Malyugin R. V. Roman Vladislavovich, Leontieva D. A. Daria, Kotelnikova A. A. Alexandra
الملخص:Title screen
The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their “height : radius” ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6·10{-2} m3 with change central hole diameter of the ribs. It has been shown that the growth of “height / radius” ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m{3} to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6·10{-2} m{3} having central hole diameter of horizontal ribs 6.4·10{-2} m.
Режим доступа: по договору с организацией-держателем ресурса
اللغة:الإنجليزية
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1063/1.5027216
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657982

MARC

LEADER 00000nla2a2200000 4500
001 657982
005 20231220103958.0
035 |a (RuTPU)RU\TPU\network\24961 
035 |a RU\TPU\network\24957 
090 |a 657982 
100 |a 20180425a2018 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of Tank Geometry on Its Average Performance  |f A. A. Orlov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 23 tit.] 
330 |a The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, and filling time of various volumes tanks with smooth inner walls depending on their “height : radius” ratio as well as the average productivity, degree, and filling time of horizontal ribbing tank with volume 6·10{-2} m3 with change central hole diameter of the ribs. It has been shown that the growth of “height / radius” ratio in tanks with smooth inner walls up to the limiting values allows significantly increasing tank average productivity and reducing its filling time. Growth of H/R ratio of tank with volume 1.0 m{3} to the limiting values (in comparison with the standard tank having H/R equal 3.49) augments tank productivity by 23.5 % and the heat exchange area by 20%. Besides, we have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6·10{-2} m{3} having central hole diameter of horizontal ribs 6.4·10{-2} m. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 0 |0 (RuTPU)RU\TPU\network\4816  |t AIP Conference Proceedings 
463 0 |0 (RuTPU)RU\TPU\network\24872  |t Vol. 1938 : Isotopes: Technologies, Materials and Application (ITMA-2017)  |o IV International Conference for Young Scientists, Post-Graduate Students and Students, 30 October–3 November 2017, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. L. Hongda, A. Yu. Godymchuk (Godimchuk), L. Rieznichenko  |v [020009, 7 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a геометрия 
610 1 |a резервуары 
610 1 |a производительность 
610 1 |a математические модели 
610 1 |a десублимация 
610 1 |a гексафторид урана 
701 1 |a Orlov  |b A. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1962-  |g Aleksey Alekseevich  |3 (RuTPU)RU\TPU\pers\34230  |9 17761 
701 1 |a Tsimbalyuk  |b A. F.  |c specialist in the field of oil and gas business  |c Associate Professor of Tomsk Polytechnic University, candidate of physical and mathematical sciences  |f 1953-  |g Aleksandr Fedorovich  |3 (RuTPU)RU\TPU\pers\36334 
701 1 |a Malyugin  |b R. V.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Roman Vladislavovich  |3 (RuTPU)RU\TPU\pers\37374 
701 1 |a Leontieva  |b D. A.  |g Daria 
701 1 |a Kotelnikova  |b A. A.  |g Alexandra 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение ядерно-топливного цикла  |3 (RuTPU)RU\TPU\col\23554 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа природных ресурсов  |b Отделение нефтегазового дела  |3 (RuTPU)RU\TPU\col\23546 
801 2 |a RU  |b 63413507  |c 20180425  |g RCR 
856 4 |u https://doi.org/10.1063/1.5027216 
942 |c CF