Contact interaction of flexible Timoshenko beams with small deflections

Bibliographische Detailangaben
Parent link:Journal of Physics: Conference Series
Vol. 944 : Applied Mechanics and System Dynamics.— 2017.— [012187, 7 p.]
Körperschaft: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники (ОАР)
Weitere Verfasser: Krysko A. V. Anton Vadimovich, Saltykova O. A. Olga Aleksandrovna, Zakharova A. A. Alena Alexandrovna, Krysko V. A. Vadim, Papkova I. V. Irina
Zusammenfassung:Title screen
In this work chaotic dynamics contact interaction of two flexible Tymoshenko beams, under the action of a transversal alternating load is investigated. The contact interaction of the beams is taken into account by the Kantor model. The geometric nonlinearity is taken into account by the model of T. von Karman. The system of partial differential equations of the twelfth order reduces to the system of ordinary differential equations by the method of finite differences of the second order. The resulting system by methods of Runge-Kutta type of the second, fourth and eighth orders was solved. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations. Chaotic vibrations of two flexible beams of Timoshenko were investigated and the optimal step values over the spatial coordinate and the time steps for the numerical experiment were found. Convergence for all applicable numerical methods have been achieved and shown that chaotic signals are true.
Sprache:Englisch
Veröffentlicht: 2017
Schlagworte:
Online-Zugang:https://doi.org/10.1088/1742-6596/944/1/012087
http://earchive.tpu.ru/handle/11683/57830
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657971

MARC

LEADER 00000naa0a2200000 4500
001 657971
005 20250825131504.0
035 |a (RuTPU)RU\TPU\network\24932 
035 |a RU\TPU\network\24815 
090 |a 657971 
100 |a 20180420d2017 k||y0engy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Contact interaction of flexible Timoshenko beams with small deflections  |f A. V. Krysko [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 11 tit.] 
330 |a In this work chaotic dynamics contact interaction of two flexible Tymoshenko beams, under the action of a transversal alternating load is investigated. The contact interaction of the beams is taken into account by the Kantor model. The geometric nonlinearity is taken into account by the model of T. von Karman. The system of partial differential equations of the twelfth order reduces to the system of ordinary differential equations by the method of finite differences of the second order. The resulting system by methods of Runge-Kutta type of the second, fourth and eighth orders was solved. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations. Chaotic vibrations of two flexible beams of Timoshenko were investigated and the optimal step values over the spatial coordinate and the time steps for the numerical experiment were found. Convergence for all applicable numerical methods have been achieved and shown that chaotic signals are true. 
461 0 |0 (RuTPU)RU\TPU\network\3526  |t Journal of Physics: Conference Series 
463 |t Vol. 944 : Applied Mechanics and System Dynamics  |o XI International scientific and technical conference, 14–16 November 2017, Omsk, Russian Federation  |v [012187, 7 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a пучки 
610 1 |a контактное взаимодействие 
610 1 |a хаос 
610 1 |a метод конечных разностей 
610 1 |a метод Рунге-Кутта 
610 1 |a геометрическая нелинейность 
701 1 |a Krysko  |b A. V.  |c specialist in the field of Informatics and computer engineering  |c programmer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences  |f 1967-  |g Anton Vadimovich  |3 (RuTPU)RU\TPU\pers\36883 
701 1 |a Saltykova  |b O. A.  |c specialist in the field of engineering graphics and descriptive geometry  |c Senior researcher of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1990-  |g Olga Aleksandrovna  |3 (RuTPU)RU\TPU\pers\40719 
701 1 |a Zakharova  |b A. A.  |c specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1972-  |g Alena Alexandrovna  |3 (RuTPU)RU\TPU\pers\33631 
701 1 |a Krysko  |b V. A.  |g Vadim 
701 1 |a Papkova  |b I. V.  |g Irina 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение автоматизации и робототехники (ОАР)  |3 (RuTPU)RU\TPU\col\23553 
801 2 |a RU  |b 63413507  |c 20200218  |g RCR 
856 4 |u https://doi.org/10.1088/1742-6596/944/1/012087 
856 4 |u http://earchive.tpu.ru/handle/11683/57830 
942 |c CF