Oxidation Behavior of Zr-1Nb Corroded in Air at 400 °C after Plasma Immersion Titanium Implantation

Dettagli Bibliografici
Parent link:Metals
Vol. 8, iss. 1.— 2018.— [27, 16 p.]
Ente Autore: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Altri autori: Obrosov A. Aleksey, Sutygina A. N. Alina Nikolaevna, Manakhov A. M. Anton Mikhaylovich, Bolz S. Sebastian, Weifs S. Sabine, Kashkarov E. B. Egor Borisovich
Riassunto:Title screen
In this paper, the influence of plasma immersion titanium implantation into the zirconium alloy Zr-1Nb on the oxidation behavior at 400 °C for 5, 24, 72, and 240 h in air under normal atmospheric pressure (101.3 kPa) was shown. The influence of implantation on the protective properties of the modified layer was shown. The valence of the oxides before and after implantation was analyzed by means of X-ray photoelectron spectroscopy (XPS). Grazing incidence X-ray diffraction (GIXRD) was carried out to examine the phase composition after titanium ion implantation and oxidation. Differential scanning calorimetry (DSC) revealed that titanium implantation exhibited effects of stabilizing the ? phase. The formation of the t-ZrO2 and m-ZrO2 was observed during the oxidation of the as-received and modified Zr-1Nb. The measurement of weight gain showed an improvement in oxidation resistance of Ti implanted Zr-1Nb at the oxidation up to 24 h when compared with that of the as-received Zr-1Nb. However, at longer oxidation cycle the oxidation rate of Ti-implanted zirconium alloy is the same with the as-received alloy, which attributed to the layer thickness. Nevertheless, the corrosion of the Ti-implanted alloy is more uniform, while a local corrosion and cracks was detected on the surface of the as-received alloy.
Lingua:inglese
Pubblicazione: 2018
Soggetti:
Accesso online:http://dx.doi.org/10.3390/met8010027
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657910

MARC

LEADER 00000naa0a2200000 4500
001 657910
005 20250123162707.0
035 |a (RuTPU)RU\TPU\network\24738 
090 |a 657910 
100 |a 20180329d2018 k||y0engy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Oxidation Behavior of Zr-1Nb Corroded in Air at 400 °C after Plasma Immersion Titanium Implantation  |f A. Obrosov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 60 tit.] 
330 |a In this paper, the influence of plasma immersion titanium implantation into the zirconium alloy Zr-1Nb on the oxidation behavior at 400 °C for 5, 24, 72, and 240 h in air under normal atmospheric pressure (101.3 kPa) was shown. The influence of implantation on the protective properties of the modified layer was shown. The valence of the oxides before and after implantation was analyzed by means of X-ray photoelectron spectroscopy (XPS). Grazing incidence X-ray diffraction (GIXRD) was carried out to examine the phase composition after titanium ion implantation and oxidation. Differential scanning calorimetry (DSC) revealed that titanium implantation exhibited effects of stabilizing the ? phase. The formation of the t-ZrO2 and m-ZrO2 was observed during the oxidation of the as-received and modified Zr-1Nb. The measurement of weight gain showed an improvement in oxidation resistance of Ti implanted Zr-1Nb at the oxidation up to 24 h when compared with that of the as-received Zr-1Nb. However, at longer oxidation cycle the oxidation rate of Ti-implanted zirconium alloy is the same with the as-received alloy, which attributed to the layer thickness. Nevertheless, the corrosion of the Ti-implanted alloy is more uniform, while a local corrosion and cracks was detected on the surface of the as-received alloy. 
461 |t Metals 
463 |t Vol. 8, iss. 1  |v [27, 16 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a цирконий 
610 1 |a сплавы 
610 1 |a сплавы циркония 
610 1 |a титан 
610 1 |a ионная имплантация 
610 1 |a окисление 
610 1 |a морфология поверхности 
610 1 |a рентгеновская дифракция 
701 1 |a Obrosov  |b A.  |g Aleksey 
701 1 |a Sutygina  |b A. N.  |c Physicist  |c Technician of Tomsk Polytechnic University  |f 1993-  |g Alina Nikolaevna  |3 (RuTPU)RU\TPU\pers\37677 
701 1 |a Manakhov  |b A. M.  |g Anton Mikhaylovich 
701 1 |a Bolz  |b S.  |g Sebastian 
701 1 |a Weifs  |b S.  |g Sabine 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |3 (RuTPU)RU\TPU\pers\34949  |9 18267 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа ядерных технологий  |b Отделение экспериментальной физики  |3 (RuTPU)RU\TPU\col\23549 
801 2 |a RU  |b 63413507  |c 20180329  |g RCR 
856 4 |u http://dx.doi.org/10.3390/met8010027 
942 |c CF