Scale‐up of Solid Oxide Fuel Cells with Magnetron Sputtered Electrolyte
| Источник: | Fuel Cells Vol. 17, iss. 3.— 2017.— [P. 378-382] |
|---|---|
| Корпоративные авторы: | , , |
| Другие авторы: | , , , , , , , |
| Примечания: | Title screen The possibility of fabricating large‐area solid oxide fuel cells (SOFC) with thin film electrolyte using a commercial physical vapor deposition technology is investigated. Yttria‐stabilized zirconia (YSZ)/gadolinium‐doped ceria (GDC) bilayer electrolyte is successfully deposited on a 10 × 5 cm2 commercial NiO/YSZ anode support by reactive magnetron sputtering. The microstructure of the fuel cells was studied by scanning electron microscopy. Current‐voltage characteristics of fuel cells at a temperature of 750°C and their power stability under electrical load were investigated. Single cells with La0.6Sr0.4Co0.2Fe0.8O3/ Gd0.1Ce0.9O1.95 (LSCF/GDC) cathode had an open cell voltage of 1.14 V and a maximum power density of 490 mW cm−2 at 750 °C using H2/N2 gas mixture as fuel and air as the oxidant. Three‐cell planar SOFC stack using 10 × 5 cm2 anode‐supported unit cells with power density of 450 mW cm−2 at a voltage of 0.7 V per cell has been assembled and tested. Режим доступа: по договору с организацией-держателем ресурса |
| Язык: | английский |
| Опубликовано: |
2017
|
| Предметы: | |
| Online-ссылка: | http://dx.doi.org/10.1021/acs.energyfuels.7b01598 |
| Формат: | Электронный ресурс Статья |
| Запись в KOHA: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657799 |
| Примечания: | Title screen The possibility of fabricating large‐area solid oxide fuel cells (SOFC) with thin film electrolyte using a commercial physical vapor deposition technology is investigated. Yttria‐stabilized zirconia (YSZ)/gadolinium‐doped ceria (GDC) bilayer electrolyte is successfully deposited on a 10 × 5 cm2 commercial NiO/YSZ anode support by reactive magnetron sputtering. The microstructure of the fuel cells was studied by scanning electron microscopy. Current‐voltage characteristics of fuel cells at a temperature of 750°C and their power stability under electrical load were investigated. Single cells with La0.6Sr0.4Co0.2Fe0.8O3/ Gd0.1Ce0.9O1.95 (LSCF/GDC) cathode had an open cell voltage of 1.14 V and a maximum power density of 490 mW cm−2 at 750 °C using H2/N2 gas mixture as fuel and air as the oxidant. Three‐cell planar SOFC stack using 10 × 5 cm2 anode‐supported unit cells with power density of 450 mW cm−2 at a voltage of 0.7 V per cell has been assembled and tested. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1021/acs.energyfuels.7b01598 |