Navigation learning system for mobile robot in heterogeneous environment: Inductive modeling approach

Podrobná bibliografie
Parent link:Conference on Computer Science and Information Technologies (CSIT): proceedings of the XIIth International Scientific and Technical Conference CSIT 2017, 05-08 September 2017, Lviv, Ukraine
Vol. 1.— 2017.— [P. 543-548]
Hlavní autor: Andrakhanov A. A. Anatoliy Aleksandrovich
Korporativní autor: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники (ОАР)
Další autoři: Belyaev A. S. Aleksandr Sergeevich
Shrnutí:Title screen
One of the key tasks of mobile robotics is navigation, which for Outdoor-type robots is exacerbated by the functioning in a priori of an unknown environment. In this paper, for the first time, the learning navigation system for mobile robot based on inductive modeling approach is presented. This approach is based on the principles of the group method of data handling (GMDH), which is one of the first techniques of Deep Learning. The paper presents the results of training models for estimating the robot's coordinates and angular orientation in heterogeneous environment. In addition to the direct readings of the on-board sensors, additional parameters were introduced to train the models, reflecting how the robot perceives the surface terramechanics. The models for estimation of the coordinates on the surface areas of various types and classifiers of the surface type were trained. The obtained results testify the efficiency of the developed Navigation Leaning System for Mobile Robot (NLS MR).
Vydáno: 2017
Témata:
On-line přístup:https://doi.org/10.1109/STC-CSIT.2017.8098846
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657652

MARC

LEADER 00000naa0a2200000 4500
001 657652
005 20250731155046.0
035 |a (RuTPU)RU\TPU\network\24272 
090 |a 657652 
100 |a 20180301d2017 k||y0engy50 ba 
101 0 |a eng 
135 |a drnn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Navigation learning system for mobile robot in heterogeneous environment: Inductive modeling approach  |f A. A. Andrakhanov, A. S. Belyaev 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 15 tit.] 
330 |a One of the key tasks of mobile robotics is navigation, which for Outdoor-type robots is exacerbated by the functioning in a priori of an unknown environment. In this paper, for the first time, the learning navigation system for mobile robot based on inductive modeling approach is presented. This approach is based on the principles of the group method of data handling (GMDH), which is one of the first techniques of Deep Learning. The paper presents the results of training models for estimating the robot's coordinates and angular orientation in heterogeneous environment. In addition to the direct readings of the on-board sensors, additional parameters were introduced to train the models, reflecting how the robot perceives the surface terramechanics. The models for estimation of the coordinates on the surface areas of various types and classifiers of the surface type were trained. The obtained results testify the efficiency of the developed Navigation Leaning System for Mobile Robot (NLS MR). 
461 |t Conference on Computer Science and Information Technologies (CSIT)  |o proceedings of the XIIth International Scientific and Technical Conference CSIT 2017, 05-08 September 2017, Lviv, Ukraine 
463 |t Vol. 1  |v [P. 543-548]  |d 2017 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a мобильные роботы 
610 1 |a гетерогенные среды 
610 1 |a испытания 
610 1 |a навигация 
610 1 |a машинное обучение 
610 1 |a групповые методы 
610 1 |a обработка данных 
610 1 |a нейроны 
700 1 |a Andrakhanov  |b A. A.  |c Specialist in the field of electrical engineering  |c Assistant of the Department of Tomsk Polytechnic University  |f 1982-  |g Anatoliy Aleksandrovich  |3 (RuTPU)RU\TPU\pers\38561  |9 20819 
701 1 |a Belyaev  |b A. S.  |c Specialist in the field of informatics and computer technology  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1994-  |g Aleksandr Sergeevich  |y Tomsk  |3 (RuTPU)RU\TPU\pers\38249  |9 20707 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение автоматизации и робототехники (ОАР)  |3 (RuTPU)RU\TPU\col\23553 
801 2 |a RU  |b 63413507  |c 20180305  |g RCR 
856 4 0 |u https://doi.org/10.1109/STC-CSIT.2017.8098846 
942 |c CF