Fuzzy Neural Network Technology Support Decision-Making
| Parent link: | Advances in Computer Science Research Vol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017).— 2017.— [P. 128-131] |
|---|---|
| 1. Verfasser: | |
| Körperschaft: | |
| Weitere Verfasser: | , |
| Zusammenfassung: | Title screen The application of fuzzy neural network models using fuzzy neuron activation functions to solve the problems of clustering the intensity of Markov chains, whose distribution belongs to the exponential family, has been investigated and discussed in this study. The research is carried out with the help of the computer simulation tools of MATLAB software. Markov chains are presented with a ten successive elementary data sets, each of which is characterized by the intensity of arrival of events. Using fuzzy neural networks, the dichotomy problem is solved: the clusterization of the intensity of ten Poisson streams. The simulation results have validated the applicability of fuzzy neural network clustering of Markov chain intensity. |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| Schlagworte: | |
| Online-Zugang: | http://dx.doi.org/10.2991/itsmssm-17.2017.27 |
| Format: | Elektronisch Buchkapitel |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657535 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 657535 | ||
| 005 | 20231101134958.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\24065 | ||
| 035 | |a RU\TPU\network\24064 | ||
| 090 | |a 657535 | ||
| 100 | |a 20180213a2017 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a FR | ||
| 105 | |a y z 100zy | ||
| 135 | |a drgn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Fuzzy Neural Network Technology Support Decision-Making |f Nguyen Anh Tu, A. M. Korikov, Nguyen Anh Tuan | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: p. 131 (11 tit.)] | ||
| 330 | |a The application of fuzzy neural network models using fuzzy neuron activation functions to solve the problems of clustering the intensity of Markov chains, whose distribution belongs to the exponential family, has been investigated and discussed in this study. The research is carried out with the help of the computer simulation tools of MATLAB software. Markov chains are presented with a ten successive elementary data sets, each of which is characterized by the intensity of arrival of events. Using fuzzy neural networks, the dichotomy problem is solved: the clusterization of the intensity of ten Poisson streams. The simulation results have validated the applicability of fuzzy neural network clustering of Markov chain intensity. | ||
| 461 | 1 | |0 (RuTPU)RU\TPU\network\18167 |t Advances in Computer Science Research | |
| 463 | 0 | |0 (RuTPU)RU\TPU\network\24029 |t Vol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017) |o IV International Scientific Conference, 5-8 December 2017, Tomsk, Russia |o [proceedings] |f National Research Tomsk Polytechnic University (TPU) ; eds. O. G. Berestneva [et al.] |v [P. 128-131] |d 2017 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a fuzzy activation functions | |
| 610 | 1 | |a fuzzy neural networks | |
| 610 | 1 | |a Markovian arrival processes | |
| 610 | 1 | |a intensity clustering | |
| 610 | 1 | |a нечеткие функции | |
| 610 | 1 | |a нечеткие нейронные сети | |
| 610 | 1 | |a марковские процессы | |
| 610 | 1 | |a кластеризация | |
| 610 | 1 | |a принятие решений | |
| 700 | 0 | |a Nguyen Anh Tu | |
| 701 | 1 | |a Korikov |b A. M. |c radiophysicist, specialist in the field of informatics and computer technology |c Professor of Tomsk Polytechnic University, doctor of technical sciences |f 1942- |g Anatoly Mikhailovich |2 stltpush |3 (RuTPU)RU\TPU\pers\35166 | |
| 701 | 0 | |a Nguyen Anh Tuan | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Инженерная школа информационных технологий и робототехники |b Отделение автоматизации и робототехники |h 7952 |2 stltpush |3 (RuTPU)RU\TPU\col\23553 |
| 801 | 2 | |a RU |b 63413507 |c 20180213 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.2991/itsmssm-17.2017.27 | |
| 942 | |c CF | ||