Fuzzy Neural Network Technology Support Decision-Making

Bibliographische Detailangaben
Parent link:Advances in Computer Science Research
Vol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017).— 2017.— [P. 128-131]
1. Verfasser: Nguyen Anh Tu
Körperschaft: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники
Weitere Verfasser: Korikov A. M. Anatoly Mikhailovich, Nguyen Anh Tuan
Zusammenfassung:Title screen
The application of fuzzy neural network models using fuzzy neuron activation functions to solve the problems of clustering the intensity of Markov chains, whose distribution belongs to the exponential family, has been investigated and discussed in this study. The research is carried out with the help of the computer simulation tools of MATLAB software. Markov chains are presented with a ten successive elementary data sets, each of which is characterized by the intensity of arrival of events. Using fuzzy neural networks, the dichotomy problem is solved: the clusterization of the intensity of ten Poisson streams. The simulation results have validated the applicability of fuzzy neural network clustering of Markov chain intensity.
Sprache:Englisch
Veröffentlicht: 2017
Schlagworte:
Online-Zugang:http://dx.doi.org/10.2991/itsmssm-17.2017.27
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657535

MARC

LEADER 00000nla2a2200000 4500
001 657535
005 20231101134958.0
035 |a (RuTPU)RU\TPU\network\24065 
035 |a RU\TPU\network\24064 
090 |a 657535 
100 |a 20180213a2017 k y0engy50 ba 
101 0 |a eng 
102 |a FR 
105 |a y z 100zy 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Fuzzy Neural Network Technology Support Decision-Making  |f Nguyen Anh Tu, A. M. Korikov, Nguyen Anh Tuan 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 131 (11 tit.)] 
330 |a The application of fuzzy neural network models using fuzzy neuron activation functions to solve the problems of clustering the intensity of Markov chains, whose distribution belongs to the exponential family, has been investigated and discussed in this study. The research is carried out with the help of the computer simulation tools of MATLAB software. Markov chains are presented with a ten successive elementary data sets, each of which is characterized by the intensity of arrival of events. Using fuzzy neural networks, the dichotomy problem is solved: the clusterization of the intensity of ten Poisson streams. The simulation results have validated the applicability of fuzzy neural network clustering of Markov chain intensity. 
461 1 |0 (RuTPU)RU\TPU\network\18167  |t Advances in Computer Science Research 
463 0 |0 (RuTPU)RU\TPU\network\24029  |t Vol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017)  |o IV International Scientific Conference, 5-8 December 2017, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. O. G. Berestneva [et al.]  |v [P. 128-131]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a fuzzy activation functions 
610 1 |a fuzzy neural networks 
610 1 |a Markovian arrival processes 
610 1 |a intensity clustering 
610 1 |a нечеткие функции 
610 1 |a нечеткие нейронные сети 
610 1 |a марковские процессы 
610 1 |a кластеризация 
610 1 |a принятие решений 
700 0 |a Nguyen Anh Tu 
701 1 |a Korikov  |b A. M.  |c radiophysicist, specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University, doctor of technical sciences  |f 1942-  |g Anatoly Mikhailovich  |2 stltpush  |3 (RuTPU)RU\TPU\pers\35166 
701 0 |a Nguyen Anh Tuan 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение автоматизации и робототехники  |h 7952  |2 stltpush  |3 (RuTPU)RU\TPU\col\23553 
801 2 |a RU  |b 63413507  |c 20180213  |g RCR 
856 4 |u http://dx.doi.org/10.2991/itsmssm-17.2017.27 
942 |c CF