Quasianalytical solution of inhomogeneous differential equation with cubic nonlinearity

Podrobná bibliografie
Parent link:Advances in Computer Science Research
Vol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017).— 2017.— [P. 103-107]
Hlavní autor: Inkhireeva T.
Korporativní autor: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение информационных технологий
Další autoři: Zimin V. P. Vyacheslav Prokopjevich
Shrnutí:Title screen
This paper considers a method for solving Cauchy problem of nonlinear differential equation. Source of solution error and way to reduce it is studied. Solution obtained with suggested method is compared with solution obtained with built-in MATLAB functions.
Jazyk:angličtina
Vydáno: 2017
Témata:
On-line přístup:http://dx.doi.org/10.2991/itsmssm-17.2017.22
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657534

MARC

LEADER 00000nla2a2200000 4500
001 657534
005 20231101134958.0
035 |a (RuTPU)RU\TPU\network\24064 
035 |a RU\TPU\network\24062 
090 |a 657534 
100 |a 20180213a2017 k y0engy50 ba 
101 0 |a eng 
102 |a FR 
105 |a y z 100zy 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Quasianalytical solution of inhomogeneous differential equation with cubic nonlinearity  |f T. Inkhireeva, V. P. Zimin 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 107 (5 tit.)] 
330 |a This paper considers a method for solving Cauchy problem of nonlinear differential equation. Source of solution error and way to reduce it is studied. Solution obtained with suggested method is compared with solution obtained with built-in MATLAB functions. 
461 1 |0 (RuTPU)RU\TPU\network\18167  |t Advances in Computer Science Research 
463 0 |0 (RuTPU)RU\TPU\network\24029  |t Vol. 72 : Information technologies in Science, Management, Social sphere and Medicine (ITSMSSM 2017)  |o IV International Scientific Conference, 5-8 December 2017, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. O. G. Berestneva [et al.]  |v [P. 103-107]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a numerical methods for solving ordinary differential equations 
610 1 |a nonlinear differential equations 
610 1 |a Cauchy problem 
610 1 |a phase portrait 
610 1 |a fundamental system of solutions 
610 1 |a equilibrium points 
610 1 |a численные методы 
610 1 |a дифференциальные уравнения 
610 1 |a задача Коши 
610 1 |a фазовый портрет 
610 1 |a фундаментальные решения 
700 1 |a Inkhireeva  |b T.  |c Tatiana 
701 1 |a Zimin  |b V. P.  |c specialist in the field of Informatics and computer engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1955-  |g Vyacheslav Prokopjevich  |2 stltpush  |3 (RuTPU)RU\TPU\pers\30922 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Инженерная школа информационных технологий и робототехники  |b Отделение информационных технологий  |h 7951  |2 stltpush  |3 (RuTPU)RU\TPU\col\23515 
801 2 |a RU  |b 63413507  |c 20180213  |g RCR 
856 4 |u http://dx.doi.org/10.2991/itsmssm-17.2017.22 
942 |c CF