Scale invariance of structural transformations in plastically deformed nanostructured solids

Dettagli Bibliografici
Parent link:Physical Mesomechanics.— , 1998-
Vol. 20, iss. 1.— 2017.— [P. 55–68]
Altri autori: Panin V. E. Viktor Evgenyevich, Panin A. V. Alexey Viktorovich, Pochivalov Yu. I. Yury Ivanovich, Elsukova T. F. Tamara Fillipovna, Shugurov A. R. Artur Rubinovich
Riassunto:Title screen
The scale-invariant mechanical behavior of a nanostructured solid is associated with plastic distortion as a major mechanism of nano- and microscale structural transformations. Active grain boundary sliding in a deformed material (microscale) within its highly developed planar subsystem (nanograin boundaries) causes a progressive increase in lattice curvature and plastic distortion of atoms which produces nonequilibrium vacant sites in the nanostructure. The motion of nonequilibrium point defects in nanostructure curvature zones provides conditions for noncrystallographic plastic flow, dissolution or dispersion of initial phases, and formation of nonequilibrium phases in a deformed material. The possibility of reversible structural phase transformations in the presence of high lattice curvature opens the way to greatly increase the fatigue life of surface nanostructured polycrystalline materials.
Lingua:inglese
Pubblicazione: 2017
Soggetti:
Accesso online:https://doi.org/10.1134/S1029959917010052
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657434

MARC

LEADER 00000naa0a2200000 4500
001 657434
005 20251206120253.0
035 |a (RuTPU)RU\TPU\network\23954 
035 |a RU\TPU\network\23953 
090 |a 657434 
100 |a 20180205d2017 k||y0engy50 ba 
101 1 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Scale invariance of structural transformations in plastically deformed nanostructured solids  |f V. E. Panin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 67-68 (35 tit.)] 
330 |a The scale-invariant mechanical behavior of a nanostructured solid is associated with plastic distortion as a major mechanism of nano- and microscale structural transformations. Active grain boundary sliding in a deformed material (microscale) within its highly developed planar subsystem (nanograin boundaries) causes a progressive increase in lattice curvature and plastic distortion of atoms which produces nonequilibrium vacant sites in the nanostructure. The motion of nonequilibrium point defects in nanostructure curvature zones provides conditions for noncrystallographic plastic flow, dissolution or dispersion of initial phases, and formation of nonequilibrium phases in a deformed material. The possibility of reversible structural phase transformations in the presence of high lattice curvature opens the way to greatly increase the fatigue life of surface nanostructured polycrystalline materials. 
461 |t Physical Mesomechanics  |d 1998- 
463 |t Vol. 20, iss. 1  |v [P. 55–68]  |d 2017 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a наноструктуры 
610 1 |a инвариантность 
610 1 |a точечные дефекты 
610 1 |a nanostructure 
610 1 |a scale invariance 
610 1 |a plastic distortion 
610 1 |a nonequilibrium point defects 
610 1 |a noncrystallographic plastic flow 
701 1 |a Panin  |b V. E.  |c Director of Russian materials science center  |c Research advisor of Institute of strength physics and materials science of Siberian branch of Russian Academy of Sciences  |f 1930-  |g Viktor Evgenyevich  |3 (RuTPU)RU\TPU\pers\26443  |9 12146 
701 1 |a Panin  |b A. V.  |c physicist  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences  |f 1971-  |g Alexey Viktorovich  |3 (RuTPU)RU\TPU\pers\34630  |9 17992 
701 1 |a Pochivalov  |b Yu. I.  |g Yury Ivanovich 
701 1 |a Elsukova  |b T. F.  |g Tamara Fillipovna 
701 1 |a Shugurov  |b A. R.  |c Specialist in the field of material science  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1967-  |g Artur Rubinovich  |y Tomsk  |9 22641 
801 2 |a RU  |b 63413507  |c 20180205  |g RCR 
856 4 |u https://doi.org/10.1134/S1029959917010052  |z https://doi.org/10.1134/S1029959917010052 
942 |c CF