Micromechanical model of deformation-induced surface roughening in polycrystalline materials

書誌詳細
Parent link:Physical Mesomechanics.— , 1998-
Vol. 20, iss. 3.— 2017.— [P. 324–333]
団体著者: Национальный исследовательский Томский политехнический университет (ТПУ) Инженерная школа ядерных технологий (ИЯТШ) Отделение экспериментальной физики (ОЭФ)
その他の著者: Romanova V. A. Varvara Aleksandrovna, Balokhonov R. R. Ruslan Revovich, Panin A. V. Alexey Viktorovich, Batukhtina E. E. Ekaterina Evgenjevna, Kazachenok M. S. Marina Sergeevna, Shakhidzhanov V. S. Valery Surenovich
要約:Title screen
A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes undulations and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained.
Режим доступа: по договору с организацией-держателем ресурса
言語:英語
出版事項: 2017
主題:
オンライン・アクセス:https://doi.org/10.1134/S1029959917030080
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657429

MARC

LEADER 00000naa0a2200000 4500
001 657429
005 20250121110718.0
035 |a (RuTPU)RU\TPU\network\23949 
035 |a RU\TPU\network\23944 
090 |a 657429 
100 |a 20180205d2017 k||y0engy50 ba 
101 1 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Micromechanical model of deformation-induced surface roughening in polycrystalline materials  |f V. A. Romanova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 332-333 (20 tit.)] 
330 |a A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes undulations and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physical Mesomechanics  |d 1998- 
463 |t Vol. 20, iss. 3  |v [P. 324–333]  |d 2017 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a поликристаллические структуры 
610 1 |a одноосное нагружение 
610 1 |a шероховатые поверхности 
610 1 |a численное моделирование 
610 1 |a polycrystalline structure 
610 1 |a uniaxial tension 
610 1 |a surface roughness 
610 1 |a numerical simulation 
610 1 |a crystal plasticity theory 
701 1 |a Romanova  |b V. A.  |g Varvara Aleksandrovna 
701 1 |a Balokhonov  |b R. R.  |g Ruslan Revovich 
701 1 |a Panin  |b A. V.  |c physicist  |c Professor of Tomsk Polytechnic University, doctor of physical and mathematical Sciences  |f 1971-  |g Alexey Viktorovich  |3 (RuTPU)RU\TPU\pers\34630  |9 17992 
701 1 |a Batukhtina  |b E. E.  |g Ekaterina Evgenjevna 
701 1 |a Kazachenok  |b M. S.  |g Marina Sergeevna 
701 1 |a Shakhidzhanov  |b V. S.  |g Valery Surenovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Инженерная школа ядерных технологий (ИЯТШ)  |b Отделение экспериментальной физики (ОЭФ)  |3 (RuTPU)RU\TPU\col\23549 
801 2 |a RU  |b 63413507  |c 20180205  |g RCR 
856 4 |u https://doi.org/10.1134/S1029959917030080 
942 |c CF