Hot target magnetron sputtering for ferromagnetic films deposition

Bibliographic Details
Parent link:Surface and Coatings Technology
Vol. 334.— 2018.— [P. 61-70]
Corporate Authors: Национальный исследовательский Томский политехнический университет Физико-технический институт Кафедра экспериментальной физики, Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра общей физики (ОФ)
Other Authors: Sidelev D. V. Dmitry Vladimirovich, Bleykher (Bleicher) G. A. Galina Alekseevna, Grudinin V. A. Vladislav Alekseevich, Krivobokov V. P. Valery Pavlovich, Bestetti M. Massimiliano, Syrtanov M. S. Maksim Sergeevich, Erofeev E. V. Evgeny Viktorovich
Summary:Title screen
This work is an investigation on the operation parameters for Ni films deposition by magnetron sputtering from target working at temperatures higher than the Curie temperature due to magnetic phase transition of the sputtered target, which is partial heat-insulated from the water-cooled magnetron body. The ferro- to paramagnetic transition of the target results in decrease of discharge voltage and rise of discharge current. Thereby, discharge power increases under voltage control mode or hot Ni target sputtering can occur at lower pressures under power control mode. Heating of the Ni target and its ferro- to paramagnetic transition leads to stabilization of the discharge parameters. The changes of the discharge current and power decreased from 10.5% to 2.5% during a single sputtering process under voltage control mode. Moreover, a slight increase of the deposition rates of 20…25% was determined, when hot target sputtering was performed. The XRD assessment showed that Ni films deposited by hot target sputtering have a textured crystal structure with larger grain sizes and lower residual stresses in comparison with cooled Ni target sputtering. When passing from cooled to hot target sputtering, the type of film growth changes from zone 1 to zone T, and surface roughness of Ni films decreased.
AM_Agreement
Language:English
Published: 2018
Subjects:
Online Access:https://doi.org/10.1016/j.surfcoat.2017.11.024
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657342

MARC

LEADER 00000naa0a2200000 4500
001 657342
005 20260210071610.0
035 |a (RuTPU)RU\TPU\network\23844 
035 |a RU\TPU\network\23745 
090 |a 657342 
100 |a 20180124d2018 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Hot target magnetron sputtering for ferromagnetic films deposition  |f D. V. Sidelev [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 69-70 (53 tit.)] 
330 |a This work is an investigation on the operation parameters for Ni films deposition by magnetron sputtering from target working at temperatures higher than the Curie temperature due to magnetic phase transition of the sputtered target, which is partial heat-insulated from the water-cooled magnetron body. The ferro- to paramagnetic transition of the target results in decrease of discharge voltage and rise of discharge current. Thereby, discharge power increases under voltage control mode or hot Ni target sputtering can occur at lower pressures under power control mode. Heating of the Ni target and its ferro- to paramagnetic transition leads to stabilization of the discharge parameters. The changes of the discharge current and power decreased from 10.5% to 2.5% during a single sputtering process under voltage control mode. Moreover, a slight increase of the deposition rates of 20…25% was determined, when hot target sputtering was performed. The XRD assessment showed that Ni films deposited by hot target sputtering have a textured crystal structure with larger grain sizes and lower residual stresses in comparison with cooled Ni target sputtering. When passing from cooled to hot target sputtering, the type of film growth changes from zone 1 to zone T, and surface roughness of Ni films decreased. 
371 0 |a AM_Agreement 
461 1 |t Surface and Coatings Technology 
463 1 |t Vol. 334  |v [P. 61-70]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a осаждение 
610 1 |a пленки 
610 1 |a магнетроны 
610 1 |a охлаждение 
610 1 |a распыление 
701 1 |a Sidelev  |b D. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1991-  |g Dmitry Vladimirovich  |y Tomsk  |3 (RuTPU)RU\TPU\pers\34524  |9 17905 
701 1 |a Bleykher (Bleicher)  |b G. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1961-  |g Galina Alekseevna  |3 (RuTPU)RU\TPU\pers\31496  |9 15657 
701 1 |a Grudinin  |b V. A.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1995-  |g Vladislav Alekseevich  |3 (RuTPU)RU\TPU\pers\42519  |9 21548 
701 1 |a Krivobokov  |b V. P.  |c Russian physicist  |c professor of Tomsk Polytechnic University (TPU), Doctor of Physical and Mathematical Sciences (DSc)  |f 1948-  |g Valery Pavlovich  |3 (RuTPU)RU\TPU\pers\30416  |9 14757 
701 1 |a Bestetti  |b M.  |c physicist  |c Researcher of Tomsk Polytechnic University  |f 1965-  |g Massimiliano  |3 (RuTPU)RU\TPU\pers\37134  |9 20127 
701 1 |a Syrtanov  |b M. S.  |c physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Maksim Sergeevich  |3 (RuTPU)RU\TPU\pers\34764  |9 18114 
701 1 |a Erofeev  |b E. V.  |g Evgeny Viktorovich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Физико-технический институт  |b Кафедра экспериментальной физики  |3 (RuTPU)RU\TPU\col\21255  |9 27946 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра общей физики (ОФ)  |3 (RuTPU)RU\TPU\col\18734 
801 2 |a RU  |b 63413507  |c 20181218  |g RCR 
856 4 |u https://doi.org/10.1016/j.surfcoat.2017.11.024 
942 |c CF