Microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb treated by plasma immersion Ti ion implantation and deposition

Détails bibliographiques
Parent link:Journal of Alloys and Compounds
Vol. 732.— 2018.— [P. 80-87]
Collectivité auteur: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра общей физики (ОФ)
Autres auteurs: Kashkarov E. B. Egor Borisovich, Nikitenkov N. N. Nikolai Nikolaevich, Sutygina A. N. Alina Nikolaevna, Laptev R. S. Roman Sergeevich, Bordulev Yu. S. Yuri Sergeevich, Obrosov A. Aleksey, Liedke Mac Iej Oskar, Wagner A. Andreas, Zak A. Andrzej, Weifs S. Sabine
Résumé:Title screen
The effect of low energy plasma immersion ion implantation and deposition of titanium on microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb was studied. Defect structure and distribution were analyzed by Doppler broadening using slow positron beam. The surface microstructure after modification is represented by nanostructured Ti grains with random orientation. The gradient distribution of titanium as well as vacancy type defects were analyzed. The concentration of vacancy type defects is rising with increasing bias voltage. Gas-phase hydrogenation of the Ti-modified Zr-1Nb alloy was performed at 400 C for 60 min. The strong interaction of hydrogen with vacancy type defects was demonstrated. Two different changes in the defect structure after hydrogenation were observed: when a titanium film is formed on the surface (after deposition at 500 V) hydrogen trapping occurs with the formation of titanium hydride phases, while in the implanted layer (deposition at 1000 and 1500 V) hydrogen is trapped due to interaction with vacancy type defects. The physical basis of Ti diffusion and its influence on the evolution of defect structure after surface modification and hydrogenation were discussed.
Режим доступа: по договору с организацией-держателем ресурса
Langue:anglais
Publié: 2018
Sujets:
Accès en ligne:https://doi.org/10.1016/j.jallcom.2017.10.151
Format: Électronique Chapitre de livre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657340

MARC

LEADER 00000naa0a2200000 4500
001 657340
005 20251028071621.0
035 |a (RuTPU)RU\TPU\network\23842 
035 |a RU\TPU\network\18545 
090 |a 657340 
100 |a 20180124d2018 k||y0engy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb treated by plasma immersion Ti ion implantation and deposition  |f E. B. Kashkarov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: р. 86-87 (47 tit.)] 
330 |a The effect of low energy plasma immersion ion implantation and deposition of titanium on microstructure, defect structure and hydrogen trapping in zirconium alloy Zr-1Nb was studied. Defect structure and distribution were analyzed by Doppler broadening using slow positron beam. The surface microstructure after modification is represented by nanostructured Ti grains with random orientation. The gradient distribution of titanium as well as vacancy type defects were analyzed. The concentration of vacancy type defects is rising with increasing bias voltage. Gas-phase hydrogenation of the Ti-modified Zr-1Nb alloy was performed at 400 C for 60 min. The strong interaction of hydrogen with vacancy type defects was demonstrated. Two different changes in the defect structure after hydrogenation were observed: when a titanium film is formed on the surface (after deposition at 500 V) hydrogen trapping occurs with the formation of titanium hydride phases, while in the implanted layer (deposition at 1000 and 1500 V) hydrogen is trapped due to interaction with vacancy type defects. The physical basis of Ti diffusion and its influence on the evolution of defect structure after surface modification and hydrogenation were discussed. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Alloys and Compounds 
463 |t Vol. 732  |v [P. 80-87]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a zirconium 
610 1 |a titanium 
610 1 |a diffusion 
610 1 |a microstructures 
610 1 |a defects 
610 1 |a цирконий 
610 1 |a ионная имплантация 
610 1 |a титан 
610 1 |a диффузия 
610 1 |a микроструктура 
610 1 |a дефекты 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |3 (RuTPU)RU\TPU\pers\34949  |9 18267 
701 1 |a Nikitenkov  |b N. N.  |c Russian physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1953-  |g Nikolai Nikolaevich  |3 (RuTPU)RU\TPU\pers\30409  |9 14751 
701 1 |a Sutygina  |b A. N.  |c Physicist  |c Technician of Tomsk Polytechnic University  |f 1993-  |g Alina Nikolaevna  |3 (RuTPU)RU\TPU\pers\37677 
701 1 |a Laptev  |b R. S.  |c physicist, specialist in the field of non-destructive testing  |c Associate Professor of Tomsk Polytechnic University, Doctor of Technical Sciences  |f 1987-  |g Roman Sergeevich  |y Tomsk  |3 (RuTPU)RU\TPU\pers\31884  |9 15956 
701 1 |a Bordulev  |b Yu. S.  |c physicist  |c Engineer of Tomsk Polytechnic University  |f 1990-  |g Yuri Sergeevich  |3 (RuTPU)RU\TPU\pers\31883 
701 1 |a Obrosov  |b A.  |g Aleksey 
701 0 |a Liedke Mac Iej Oskar 
701 1 |a Wagner  |b A.  |g Andreas 
701 1 |a Zak  |b A.  |g Andrzej 
701 1 |a Weifs  |b S.  |g Sabine 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра общей физики (ОФ)  |3 (RuTPU)RU\TPU\col\18734 
801 2 |a RU  |b 63413507  |c 20180124  |g RCR 
856 4 |u https://doi.org/10.1016/j.jallcom.2017.10.151 
942 |c CF