Numerical Algorithm for Laser Treatment of Powder Layer with Variable Thickness

Bibliographic Details
Parent link:AIP Conference Proceedings
Vol. 1909 : Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures 2017 (AMHS’17).— 2017.— [020208, 4 p.]
Main Author: Soboleva P. Polina
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра физики высоких технологий в машиностроении (ФВТМ)
Other Authors: Knyazeva A. G. Anna Georgievna
Summary:Title screen
Two-dimensional model of laser treatment of powder layer on the substrate is proposed in this paper. The model takes into account the shrinkage of powder layer due to the laser treatment. Three simplified variants of the model were studied. Firstly, the influence of optical properties of powder layer on the maximal temperature was researched. Secondly, two-dimensional model for given thickness of powder layer was studied where practically uniform temperature distribution across thin powder layer was demonstrated. Then, the numerical algorithm was developed to calculate the temperature field for the area of variable size. The impact of the optical properties of powder material on the character of the temperature distribution was researched numerically.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2017
Subjects:
Online Access:https://doi.org/10.1063/1.5013889
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=657179
Description
Summary:Title screen
Two-dimensional model of laser treatment of powder layer on the substrate is proposed in this paper. The model takes into account the shrinkage of powder layer due to the laser treatment. Three simplified variants of the model were studied. Firstly, the influence of optical properties of powder layer on the maximal temperature was researched. Secondly, two-dimensional model for given thickness of powder layer was studied where practically uniform temperature distribution across thin powder layer was demonstrated. Then, the numerical algorithm was developed to calculate the temperature field for the area of variable size. The impact of the optical properties of powder material on the character of the temperature distribution was researched numerically.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1063/1.5013889