Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction

Detalles Bibliográficos
Parent link:Materials and Design.— , 1978-
Vol. 133.— 2017.— [P. 195-204]
Corporate Authors: Национальный исследовательский Томский политехнический университет (ТПУ) Инженерная школа ядерных технологий (ИЯТШ) Лаборатория плазменных гибридных систем (ЛПГС), Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра экспериментальной физики (ЭФ)
Outros autores: Surmeneva M. A. Maria Alexandrovna, Surmenev R. A. Roman Anatolievich, Chudinova E. A. Ekaterina Aleksandrovna, Koptioug A. V. Andrei, Тkachev M. Mikhail, Gorodzha S. N. Svetlana Nikolaevna, Rannar L. E. Lars Erik
Summary:Title screen
The triple- and double-layered mesh Ti-based alloy scaffolds were successfully fabricated using electron beam melting (EBM). In this study Ti-based alloy cylindrical scaffolds with different 3D architectures intended for the segmental bone defect treatment were systematically compared. All lattice-like scaffolds were additively manufactured using EBM technology from Ti6Al4V to mimic the structures of human trabecular bone. Cylindrically-shaped lattice scaffolds (outer diameter of 15 mm and length of 35 mm) of five different types were designed and manufactured. Four types were tubular with inner hole diameter of 5 mm and two lattice layers of different density. Fifth type was cylindrical with three lattice layers of different density. In all samples outer lattice layer was most dense, and inner layers- least dense. Mechanical properties of scaffolds were determined by conducting uniaxial compression testing. The strain-stress curves for all samples with gradient porosities showed considerable ductility.
Режим доступа: по договору с организацией-держателем ресурса
Publicado: 2017
Subjects:
Acceso en liña:https://doi.org/10.1016/j.matdes.2017.07.059
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656901

MARC

LEADER 00000naa0a2200000 4500
001 656901
005 20250407114614.0
035 |a (RuTPU)RU\TPU\network\23381 
090 |a 656901 
100 |a 20171220d2017 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction  |f M. A. Surmeneva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 203-204 (50 tit.)] 
330 |a The triple- and double-layered mesh Ti-based alloy scaffolds were successfully fabricated using electron beam melting (EBM). In this study Ti-based alloy cylindrical scaffolds with different 3D architectures intended for the segmental bone defect treatment were systematically compared. All lattice-like scaffolds were additively manufactured using EBM technology from Ti6Al4V to mimic the structures of human trabecular bone. Cylindrically-shaped lattice scaffolds (outer diameter of 15 mm and length of 35 mm) of five different types were designed and manufactured. Four types were tubular with inner hole diameter of 5 mm and two lattice layers of different density. Fifth type was cylindrical with three lattice layers of different density. In all samples outer lattice layer was most dense, and inner layers- least dense. Mechanical properties of scaffolds were determined by conducting uniaxial compression testing. The strain-stress curves for all samples with gradient porosities showed considerable ductility. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Materials and Design  |d 1978- 
463 |t Vol. 133  |v [P. 195-204]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a аддитивное производство 
610 1 |a электронно-лучевая плавка 
610 1 |a титановые сплавы 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
701 1 |a Chudinova  |b E. A.  |c physicist  |c laboratory assistant of Tomsk Polytechnic University  |f 1993-  |g Ekaterina Aleksandrovna  |3 (RuTPU)RU\TPU\pers\34765 
701 1 |a Koptioug  |b A. V.  |g Andrei 
701 1 |a Тkachev  |b M.  |g Mikhail 
701 1 |a Gorodzha  |b S. N.  |c physicist  |c research engineer of Tomsk Polytechnic University  |f 1989-  |g Svetlana Nikolaevna  |3 (RuTPU)RU\TPU\pers\36022 
701 1 |a Rannar  |b L. E.  |g Lars Erik 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Инженерная школа ядерных технологий (ИЯТШ)  |b Лаборатория плазменных гибридных систем (ЛПГС)  |c (2017- )  |3 (RuTPU)RU\TPU\col\23381 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра экспериментальной физики (ЭФ)  |3 (RuTPU)RU\TPU\col\21255 
801 2 |a RU  |b 63413507  |c 20171225  |g RCR 
856 4 0 |u https://doi.org/10.1016/j.matdes.2017.07.059 
942 |c CF