Solutions of the bi-confluent Heun equation in terms of the Hermite functions

Bibliographic Details
Parent link:Annals of Physics
Vol. 383.— 2017.— [P. 79-91]
Main Author: Ishkhanyan T. Tigran
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра общей физики (ОФ)
Other Authors: Ishkhanyan A. Artur
Summary:Title screen
We construct an expansion of the solutions of the bi-confluent Heun equation in terms of the Hermite functions. The series is governed by a three-term recurrence relation between successive coefficients of the expansion. We examine the restrictions that are imposed on the involved parameters in order that the series terminates thus resulting in closed-form finite-sum solutions of the bi-confluent Heun equation. A physical application of the closed-form solutions is discussed. We present the five six-parametric potentials for which the general solution of the one-dimensional Schrцdinger equation is written in terms of the bi-confluent Heun functions and further identify a particular conditionally integrable potential for which the involved bi-confluent Heun function admits a four-term finite-sum expansion in terms of the Hermite functions. This is an infinite well defined on a half-axis. We present the explicit solution of the one-dimensional Schrцdinger equation for this potential and discuss the bound states supported by the potential. We derive the exact equation for the energy spectrum and construct an accurate approximation for the bound-state energy levels.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.1016/j.aop.2017.04.015
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656879

MARC

LEADER 00000naa0a2200000 4500
001 656879
005 20250407110258.0
035 |a (RuTPU)RU\TPU\network\23359 
090 |a 656879 
100 |a 20171218d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Solutions of the bi-confluent Heun equation in terms of the Hermite functions  |f T. Ishkhanyan, A. Ishkhanyan 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 91 (46 tit.)] 
330 |a We construct an expansion of the solutions of the bi-confluent Heun equation in terms of the Hermite functions. The series is governed by a three-term recurrence relation between successive coefficients of the expansion. We examine the restrictions that are imposed on the involved parameters in order that the series terminates thus resulting in closed-form finite-sum solutions of the bi-confluent Heun equation. A physical application of the closed-form solutions is discussed. We present the five six-parametric potentials for which the general solution of the one-dimensional Schrцdinger equation is written in terms of the bi-confluent Heun functions and further identify a particular conditionally integrable potential for which the involved bi-confluent Heun function admits a four-term finite-sum expansion in terms of the Hermite functions. This is an infinite well defined on a half-axis. We present the explicit solution of the one-dimensional Schrцdinger equation for this potential and discuss the bound states supported by the potential. We derive the exact equation for the energy spectrum and construct an accurate approximation for the bound-state energy levels. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Annals of Physics 
463 |t Vol. 383  |v [P. 79-91]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Bi-confluent Heun equation 
610 1 |a Series expansion 
610 1 |a ermite function 
610 1 |a уравнение Гойна 
610 1 |a уравнение Шредингера 
700 1 |a Ishkhanyan  |b T.  |g Tigran 
701 1 |a Ishkhanyan  |b A.  |c physicist  |c Associate Scientist of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1960-  |g Artur  |3 (RuTPU)RU\TPU\pers\36243 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра общей физики (ОФ)  |3 (RuTPU)RU\TPU\col\18734 
801 2 |a RU  |b 63413507  |c 20171225  |g RCR 
856 4 |u https://doi.org/10.1016/j.aop.2017.04.015 
942 |c CF