Scientific basis for cold brittleness of structural BCC steels and their structural degradation at below zero temperatures

Dades bibliogràfiques
Parent link:Physical Mesomechanics.— , 1998-
Vol. 20, iss. 2.— 2017.— [P. 125-133]
Autor corporatiu: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра материаловедения в машиностроении (ММС)
Altres autors: Panin V. E. Viktor Evgenyevich, Derevyagina L. S. Lyudmila Sergeevna, Lebedev M. P. Mikhail Petrovich, Syromyatnikova A. S. Aytalina Stepanovna, Surikova N. S. Nataljya Sergeevna, Pochivalov Yu. I. Yury Ivanovich, Ovechkin B. B. Boris Borisovich
Sumari:Title screen
The paper considers the physics of cold brittleness of structural bcc steels and methods of reducing the ductile-brittle fracture temperature. A complex study was performed to examine the degradation of structural phase state of pipe steel 09Mn2Si from the main gas pipeline of Yakutia after long-term (over 3 0 years) operation. Important regularities of degradation of pearlite colonies with carbide precipitation on ferrite grain boundaries were revealed. This phenomenon is associated with brittle fracture of gas pipelines. It is shown that the low-temperature kinetic processes in main pipelines which define the degradation of their structure and properties are related to interstitial athermal structural states in the zones of local crystal structure curvature. This is a fundamentally new, as yet unknown, mechanism. Pipe steels in warm rolling acquire a longitudinal textured band structure with alternating bands of initial ferrite grains and bands of fine grains with carbide precipitates formed during lamellar pearlite degradation. This type of structure allows for a shift of ductile-brittle transition temperature down to -80°C and ductility ? = 22% at this temperature. The production of high-curvature vortex structure in pipe steel surface layers results in a 3.5-fold increase in their service life.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:anglès
Publicat: 2017
Matèries:
Accés en línia:https://doi.org/10.1134/S1029959917020023
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656869

MARC

LEADER 00000naa0a2200000 4500
001 656869
005 20250407104631.0
035 |a (RuTPU)RU\TPU\network\23349 
090 |a 656869 
100 |a 20171218d2017 k||y0rusy50 ba 
101 1 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Scientific basis for cold brittleness of structural BCC steels and their structural degradation at below zero temperatures  |f V. E. Panin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 133 (19 tit.)] 
330 |a The paper considers the physics of cold brittleness of structural bcc steels and methods of reducing the ductile-brittle fracture temperature. A complex study was performed to examine the degradation of structural phase state of pipe steel 09Mn2Si from the main gas pipeline of Yakutia after long-term (over 3 0 years) operation. Important regularities of degradation of pearlite colonies with carbide precipitation on ferrite grain boundaries were revealed. This phenomenon is associated with brittle fracture of gas pipelines. It is shown that the low-temperature kinetic processes in main pipelines which define the degradation of their structure and properties are related to interstitial athermal structural states in the zones of local crystal structure curvature. This is a fundamentally new, as yet unknown, mechanism. Pipe steels in warm rolling acquire a longitudinal textured band structure with alternating bands of initial ferrite grains and bands of fine grains with carbide precipitates formed during lamellar pearlite degradation. This type of structure allows for a shift of ductile-brittle transition temperature down to -80°C and ductility ? = 22% at this temperature. The production of high-curvature vortex structure in pipe steel surface layers results in a 3.5-fold increase in their service life. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Physical Mesomechanics  |d 1998- 
463 |t Vol. 20, iss. 2  |v [P. 125-133]  |d 2017 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a хрупкость 
610 1 |a кристаллическая структура 
610 1 |a фазовые переходы 
610 1 |a атермические процессы 
610 1 |a cold brittleness 
610 1 |a low-temperature structural phase transitions 
610 1 |a crystal structure curvature 
610 1 |a athermal processes in zones of structure curvature 
610 1 |a cold-brittleness reduction methods 
610 1 |a низкотемпературные переходы 
610 1 |a структурные переходы 
701 1 |a Panin  |b V. E.  |c Director of Russian materials science center  |c Research advisor of Institute of strength physics and materials science of Siberian branch of Russian Academy of Sciences  |f 1930-  |g Viktor Evgenyevich  |3 (RuTPU)RU\TPU\pers\26443 
701 1 |a Derevyagina  |b L. S.  |g Lyudmila Sergeevna 
701 1 |a Lebedev  |b M. P.  |g Mikhail Petrovich 
701 1 |a Syromyatnikova  |b A. S.  |g Aytalina Stepanovna 
701 1 |a Surikova  |b N. S.  |g Nataljya Sergeevna 
701 1 |a Pochivalov  |b Yu. I.  |g Yury Ivanovich 
701 1 |a Ovechkin  |b B. B.  |c specialist in the field of material science  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1959-  |g Boris Borisovich  |3 (RuTPU)RU\TPU\pers\33558 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт физики высоких технологий (ИФВТ)  |b Кафедра материаловедения в машиностроении (ММС)  |3 (RuTPU)RU\TPU\col\18688 
801 2 |a RU  |b 63413507  |c 20171225  |g RCR 
856 4 |u https://doi.org/10.1134/S1029959917020023 
942 |c CF