The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

Dades bibliogràfiques
Parent link:Metals
Vol. 7, iss. 11.— 2017.— [497, 13 p.]
Autor corporatiu: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра физики высоких технологий в машиностроении (ФВТМ)
Altres autors: Shulepov I. A. Ivan Anisimovich, Kashkarov E. B. Egor Borisovich, Stepanov I. B. Igor Borisovich, Syrtanov M. S. Maksim Sergeevich, Sutygina A. N. Alina Nikolaevna, Shanenkov I. I. Ivan Igorevich, Obrosov A. Aleksey, Weifs S. Sabine
Sumari:Title screen
Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2? angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa) and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.
Idioma:anglès
Publicat: 2017
Matèries:
Accés en línia:http://dx.doi.org/10.3390/met7110497
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656840

MARC

LEADER 00000naa0a2200000 4500
001 656840
005 20250407102802.0
035 |a (RuTPU)RU\TPU\network\23320 
090 |a 656840 
100 |a 20171214d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes  |f I. A. Shulepov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 49 tit.] 
330 |a Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD) during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES), X-ray diffraction (XRD), transmission electron microscopy (TEM) and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220) direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220) reflex to a higher 2? angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa) and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests. 
461 |t Metals 
463 |t Vol. 7, iss. 11  |v [497, 13 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a вакуумная дуга 
610 1 |a осаждение 
610 1 |a катоды 
610 1 |a фазовый состав 
610 1 |a твердость 
610 1 |a износостойкость 
701 1 |a Shulepov  |b I. A.  |c physicist  |c Engineer-designer of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1954-  |g Ivan Anisimovich  |3 (RuTPU)RU\TPU\pers\33092 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |3 (RuTPU)RU\TPU\pers\34949  |9 18267 
701 1 |a Stepanov  |b I. B.  |c physicist  |c Head of the laboratory of Tomsk Polytechnic University, Doctor of technical sciences  |f 1968-  |g Igor Borisovich  |3 (RuTPU)RU\TPU\pers\34218  |9 17749 
701 1 |a Syrtanov  |b M. S.  |c physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Maksim Sergeevich  |3 (RuTPU)RU\TPU\pers\34764  |9 18114 
701 1 |a Sutygina  |b A. N.  |c Physicist  |c Technician of Tomsk Polytechnic University  |f 1993-  |g Alina Nikolaevna  |3 (RuTPU)RU\TPU\pers\37677  |9 20482 
701 1 |a Shanenkov  |b I. I.  |c specialist in the field of electric power engineering  |c Associate Professor of the Department of Tomsk Polytechnic University, Candidate of Sciences  |f 1990-  |g Ivan Igorevich  |3 (RuTPU)RU\TPU\pers\32880  |9 16728 
701 1 |a Obrosov  |b A.  |g Aleksey 
701 1 |a Weifs  |b S.  |g Sabine 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт физики высоких технологий (ИФВТ)  |b Кафедра физики высоких технологий в машиностроении (ФВТМ)  |3 (RuTPU)RU\TPU\col\18687 
801 2 |a RU  |b 63413507  |c 20171214  |g RCR 
856 4 |u http://dx.doi.org/10.3390/met7110497 
942 |c CF