Vibrations of a conductive string in a nonstationary magnetic field under presence of two nonlinear factors
| Источник: | Journal of Applied and Industrial Mathematics Vol. 11, iss. 4.— 2017.— [P. 600-604] |
|---|---|
| Главный автор: | |
| Автор-организация: | |
| Другие авторы: | |
| Примечания: | Title screen We consider vibrations of a conductive string with fixed ends in a magnetic field. Induction of the magnetic field is a preassigned function of time. Two nonlinear factors are taken into account simultaneously: the variation of string tension with displacement and the magnetostrictive effect. It is shown that, in the case of a periodic magnetic field, the nonlinear factors can compensate each other and the problem can be reduced to studying the linearized parametric vibrations. Режим доступа: по договору с организацией-держателем ресурса |
| Язык: | английский |
| Опубликовано: |
2017
|
| Предметы: | |
| Online-ссылка: | https://doi.org/10.1134/S1990478917040184 |
| Формат: | Электронный ресурс Статья |
| Запись в KOHA: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656790 |
| Примечания: | Title screen We consider vibrations of a conductive string with fixed ends in a magnetic field. Induction of the magnetic field is a preassigned function of time. Two nonlinear factors are taken into account simultaneously: the variation of string tension with displacement and the magnetostrictive effect. It is shown that, in the case of a periodic magnetic field, the nonlinear factors can compensate each other and the problem can be reduced to studying the linearized parametric vibrations. Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.1134/S1990478917040184 |