Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: Entropy generation analysis

Detalles Bibliográficos
Parent link:International Journal of Numerical Methods for Heat and Fluid Flow
Vol. 27, iss. 4.— 2017.— [P. 958-980]
Autor Corporativo: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Outros autores: Sheremet M. A. Mikhail Aleksandrovich, Pop I. Ioan, Oztop H. F. Hakan, Abu-Hamdeh N. Nidal
Summary:Title screen
Purpose. The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model. Design/methodology/approach. The cavity is heated non-uniformly from the wavy wall and cooled from the right side while it is insulated from the horizontal walls. The physical domain of the problem is transformed into a rectangular geometry in the computational domain using an algebraic coordinate transformation by introducing new independent variables ξ and η. The governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The governing parameters are Rayleigh number (Ra = 1000-100000), Prandtl number (Pr = 6.82), solid volume fraction parameter of nanoparticles (φ = 0.0-0.05), aspect ratio parameter (A = 1), undulation number (κ = 1-3), wavy contraction ratio (b = 0.1-0.3) and dimensionless time (τ = 0-0.27). Findings. It is found that the average Bejan number is an increasing function of nanoparticle volume fraction and a decreasing function of the Rayleigh number, undulation number and wavy contraction ratio. Also, an insertion of nanoparticles leads to an attenuation of convective flow and enhancement of heat transfer. Originality. The originality of this work is to analyze the entropy generation in natural convection within a wavy nanofluid cavity using single-phase nanofluid model. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and will be a way to predict the properties of this flow for the possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglés
Publicado: 2017
Subjects:
Acceso en liña:https://doi.org/10.1108/HFF-02-2016-0063
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656777

MARC

LEADER 00000naa0a2200000 4500
001 656777
005 20250407094329.0
035 |a (RuTPU)RU\TPU\network\23257 
090 |a 656777 
100 |a 20171212d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Natural convection of nanofluid inside a wavy cavity with a non-uniform heating: Entropy generation analysis  |f M. A. Sheremet [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Purpose. The main purpose of this numerical study is to study on entropy generation in natural convection of nanofluid in a wavy cavity using a single-phase nanofluid model. Design/methodology/approach. The cavity is heated non-uniformly from the wavy wall and cooled from the right side while it is insulated from the horizontal walls. The physical domain of the problem is transformed into a rectangular geometry in the computational domain using an algebraic coordinate transformation by introducing new independent variables ξ and η. The governing dimensionless partial differential equations with corresponding initially and boundary conditions were numerically solved by the finite difference method of the second-order accuracy. The governing parameters are Rayleigh number (Ra = 1000-100000), Prandtl number (Pr = 6.82), solid volume fraction parameter of nanoparticles (φ = 0.0-0.05), aspect ratio parameter (A = 1), undulation number (κ = 1-3), wavy contraction ratio (b = 0.1-0.3) and dimensionless time (τ = 0-0.27). Findings. It is found that the average Bejan number is an increasing function of nanoparticle volume fraction and a decreasing function of the Rayleigh number, undulation number and wavy contraction ratio. Also, an insertion of nanoparticles leads to an attenuation of convective flow and enhancement of heat transfer. Originality. The originality of this work is to analyze the entropy generation in natural convection within a wavy nanofluid cavity using single-phase nanofluid model. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and will be a way to predict the properties of this flow for the possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t International Journal of Numerical Methods for Heat and Fluid Flow 
463 |t Vol. 27, iss. 4  |v [P. 958-980]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a nanofluid 
610 1 |a entropy generation 
610 1 |a numerical results 
610 1 |a natural convection 
610 1 |a wavy cavity 
610 1 |a non-uniform heating 
610 1 |a нанофлюиды 
610 1 |a энтропия 
610 1 |a генерация 
610 1 |a естественная конвекция 
610 1 |a численные результаты 
610 1 |a неравномерный нагрев 
701 1 |a Sheremet  |b M. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115  |9 18390 
701 1 |a Pop  |b I.  |g Ioan 
701 1 |a Oztop  |b H. F.  |g Hakan 
701 1 |a Abu-Hamdeh  |b N.  |g Nidal 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20171222  |g RCR 
856 4 |u https://doi.org/10.1108/HFF-02-2016-0063 
942 |c CF