Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect

Bibliographic Details
Parent link:Applied Mathematics and Computation: Scientific Journal
Vol. 299.— 2017.— [P. 1-15]
Main Author: Sheremet M. A. Mikhail Aleksandrovich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Other Authors: Revnic С. Cornelia, Pop I. Ioan
Summary:Title screen
A numerical study of natural convection inside a porous wavy cavity filled with a nanofluid under the effect of thermal dispersion has been carried out using the Forchheimer–Buongiorno approach. The left boundary of the cavity is a wavy isothermal wall while the rest are flat isothermal walls. All boundaries are assumed to be impermeable to the base fluid and nanoparticles. The governing equations formulated in dimensionless stream function, temperature and nanoparticle volume fraction variables have been solved using implicit finite difference schemes of the second order accuracy. The effects of the Rayleigh number, undulation number, thermal dispersion parameter and flow inertia parameter on the average Nusselt number along the hot bottom wall, as well as on the streamlines, isotherms and isoconcentrations have been analyzed. It has been revealed the heat transfer enhancement with Rayleigh number, undulation number and dispersion parameter. While convective flow is attenuated with a growth of undulation number, dispersion parameter and flow inertia parameter. More essential homogenization of nanoparticles distribution inside the cavity occurs with an increase in Rayleigh number and a decrease in undulation number.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.1016/j.amc.2016.11.032
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656747

MARC

LEADER 00000naa0a2200000 4500
001 656747
005 20250404164632.0
035 |a (RuTPU)RU\TPU\network\23227 
090 |a 656747 
100 |a 20171211d2017 k||y0rusy50 ba 
101 1 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect  |f M. A. Sheremet, С. Revnic, I. Pop 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 14-15 (57 tit.)] 
330 |a A numerical study of natural convection inside a porous wavy cavity filled with a nanofluid under the effect of thermal dispersion has been carried out using the Forchheimer–Buongiorno approach. The left boundary of the cavity is a wavy isothermal wall while the rest are flat isothermal walls. All boundaries are assumed to be impermeable to the base fluid and nanoparticles. The governing equations formulated in dimensionless stream function, temperature and nanoparticle volume fraction variables have been solved using implicit finite difference schemes of the second order accuracy. The effects of the Rayleigh number, undulation number, thermal dispersion parameter and flow inertia parameter on the average Nusselt number along the hot bottom wall, as well as on the streamlines, isotherms and isoconcentrations have been analyzed. It has been revealed the heat transfer enhancement with Rayleigh number, undulation number and dispersion parameter. While convective flow is attenuated with a growth of undulation number, dispersion parameter and flow inertia parameter. More essential homogenization of nanoparticles distribution inside the cavity occurs with an increase in Rayleigh number and a decrease in undulation number. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Applied Mathematics and Computation  |o Scientific Journal 
463 |t Vol. 299  |v [P. 1-15]  |d 2017 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a free convection 
610 1 |a porous cavity 
610 1 |a wavy wall 
610 1 |a thermal dispersion 
610 1 |a nanofluid 
610 1 |a numerical results 
610 1 |a свободная конвекция 
610 1 |a наножидкости 
610 1 |a численные результаты 
610 1 |a пористые полости 
700 1 |a Sheremet  |b M. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115  |9 18390 
701 1 |a Revnic  |b С.  |g Cornelia 
701 1 |a Pop  |b I.  |g Ioan 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20171211  |g RCR 
856 4 0 |u https://doi.org/10.1016/j.amc.2016.11.032 
942 |c CF