Convective heat transfer in a lid-driven cavity with a heat-conducting solid backward step under the effect of buoyancy force

التفاصيل البيبلوغرافية
Parent link:International Journal of Heat and Mass Transfer
Vol. 112.— 2017.— [P. 158-168]
مؤلف مشترك: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
مؤلفون آخرون: Gibanov N. S. Nikita, Sheremet M. A. Mikhail Aleksandrovich, Oztop H. F. Hakan, Al-Salem Kh. Khaled
الملخص:Title screen
Mixed convection in a lid-driven cavity filled with an alumina-water nanofluid in the presence of a bottom heat-conducting solid backward step has been studied numerically. Mathematical model includes partial differential equations formulated on the basis of conservation laws for mass, momentum and energy using dimensionless variables such as stream function, vorticity and temperature, and corresponding boundary conditions. The boundary-value problem has been solved by finite difference method of the second order accuracy. The effects of Richardson number (Ri = 0.01-10.0), wall step height ratio (0.3 <= h2/L <= 0.7), distance ratio between left wall and wall step (0.3 <= l/L <= 0.7), thermal conductivity ratio (1.0 <= K<= 10.0), and nanoparticles volume fraction (0 <= [psi] <= 0.05) on streamlines and isotherms as well as average Nusselt number at moving hot wall and fluid flow rate have been analyzed for Reynolds number (Re = 100), Prandtl number (Pr = 6.82) and solid wall thickness ratio (h1/L=0.1). It has been found that sizes and thermal conductivity of a backward step can essentially modify the flow and heat transfer patterns with the process intensity.
Режим доступа: по договору с организацией-держателем ресурса
اللغة:الإنجليزية
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.102
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656738

MARC

LEADER 00000naa0a2200000 4500
001 656738
005 20250404164316.0
035 |a (RuTPU)RU\TPU\network\23218 
090 |a 656738 
100 |a 20171211d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Convective heat transfer in a lid-driven cavity with a heat-conducting solid backward step under the effect of buoyancy force  |f N. S. Gibanov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 167-168 (33 tit.)] 
330 |a Mixed convection in a lid-driven cavity filled with an alumina-water nanofluid in the presence of a bottom heat-conducting solid backward step has been studied numerically. Mathematical model includes partial differential equations formulated on the basis of conservation laws for mass, momentum and energy using dimensionless variables such as stream function, vorticity and temperature, and corresponding boundary conditions. The boundary-value problem has been solved by finite difference method of the second order accuracy. The effects of Richardson number (Ri = 0.01-10.0), wall step height ratio (0.3 <= h2/L <= 0.7), distance ratio between left wall and wall step (0.3 <= l/L <= 0.7), thermal conductivity ratio (1.0 <= K<= 10.0), and nanoparticles volume fraction (0 <= [psi] <= 0.05) on streamlines and isotherms as well as average Nusselt number at moving hot wall and fluid flow rate have been analyzed for Reynolds number (Re = 100), Prandtl number (Pr = 6.82) and solid wall thickness ratio (h1/L=0.1). It has been found that sizes and thermal conductivity of a backward step can essentially modify the flow and heat transfer patterns with the process intensity. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t International Journal of Heat and Mass Transfer 
463 |t Vol. 112  |v [P. 158-168]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a mixed convection 
610 1 |a lid-driven cavity 
610 1 |a heat-conducting backward step 
610 1 |a nanofluid 
610 1 |a brownian motion effect 
610 1 |a numerical results 
610 1 |a смешанная конвекция 
610 1 |a полости 
610 1 |a броуновское движение 
610 1 |a численные результаты 
610 1 |a теплопроводность 
610 1 |a наножидкости 
701 1 |a Gibanov  |b N. S.  |g Nikita 
701 1 |a Sheremet  |b M. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115  |9 18390 
701 1 |a Oztop  |b H. F.  |g Hakan 
701 1 |a Al-Salem  |b Kh.  |g Khaled 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20171221  |g RCR 
856 4 |u https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.102 
942 |c CF