Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid

Dettagli Bibliografici
Parent link:International Journal of Heat and Mass Transfer
Vol. 114.— 2017.— [P. 1086-1097]
Ente Autore: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Altri autori: Gibanov N. S. Nikita, Sheremet M. A. Mikhail Aleksandrovich, Oztop H. F. Hakan, Abu-Hamdeh N. Nidal
Riassunto:Title screen
MHD mixed convection in a lid-driven cavity with partially filled with a porous medium saturated with a ferrofluid has been analyzed numerically. The domain of interest consists of a bottom porous layer and a nanofluid layer over the porous one with a heated motionless bottom wall and cooled upper moved wall. The governing partial differential equations formulated on the basis of a single-phase model for nanofluid, Brinkman-extended Darcy model for porous layer and Boussinesq approximation for buoyancy force have been solved by finite difference method of the second-order accuracy. Analysis has been carried out for a wide range of Hartmann number, magnetic field inclination angle, Darcy number, porous layer height, and nanoparticles volume fraction. It has been revealed that average Nusselt number is a non-monotonic function of Darcy number and porous layer height, while a growth of Hartmann number illustrates the heat transfer rate reduction.
Режим доступа: по договору с организацией-держателем ресурса
Pubblicazione: 2017
Soggetti:
Accesso online:https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.001
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656735
Descrizione
Riassunto:Title screen
MHD mixed convection in a lid-driven cavity with partially filled with a porous medium saturated with a ferrofluid has been analyzed numerically. The domain of interest consists of a bottom porous layer and a nanofluid layer over the porous one with a heated motionless bottom wall and cooled upper moved wall. The governing partial differential equations formulated on the basis of a single-phase model for nanofluid, Brinkman-extended Darcy model for porous layer and Boussinesq approximation for buoyancy force have been solved by finite difference method of the second-order accuracy. Analysis has been carried out for a wide range of Hartmann number, magnetic field inclination angle, Darcy number, porous layer height, and nanoparticles volume fraction. It has been revealed that average Nusselt number is a non-monotonic function of Darcy number and porous layer height, while a growth of Hartmann number illustrates the heat transfer rate reduction.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.ijheatmasstransfer.2017.07.001