Free convection in wavy porous enclosures with non-uniform temperature boundary conditions filled with a nanofluid: Buongiorno’s mathematical model

Bibliographic Details
Parent link:Thermal Science.— , 2002-
Vol. 21, iss. 3.— 2017.— [P. 1183-1193]
Main Author: Sheremet M. A. Mikhail Aleksandrovich
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Other Authors: Pop I. Ioan
Summary:Title screen
In the present work, the influence of the amplitude ratio, phase deviation, and undulation number on natural convection in a wavy-walled enclosures differentially heated and filled with a water based nanofluid is studied. The upper and bottom walls are wavy with several undulations. The sinusoidal distribution of temperature is imposed at the vertical walls. The flow, heat, and mass transfer are calculated by solving governing equations for embody the conservation of total mass, momentum, thermal energy, and nanoparticles, taking into account the Darcy-Boussinesq-Buongiorno approximation with second order finite difference method in “stream function-temperature-concentration” formulation. Results are presented in the form of streamlines, isotherm, and isoconcentration contours, and distributions of the average Nusselt number for the different values of the amplitude ratio of the sinusoidal temperature on the right side wall to that on the left side wall (γ = 0-1), phase deviation (φ = 0-π), and undulation number (κ = 1-4). It has been found that variations of the undulation number allow to control the heat and mass transfer rates. Moreover, an increase in the undulation number leads to an extension of the non-homogeneous zones.
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.2298/TSCI140814089S
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656717

MARC

LEADER 00000naa0a2200000 4500
001 656717
005 20250404162257.0
035 |a (RuTPU)RU\TPU\network\23183 
090 |a 656717 
100 |a 20171208d2017 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Free convection in wavy porous enclosures with non-uniform temperature boundary conditions filled with a nanofluid: Buongiorno’s mathematical model  |f M. A. Sheremet, I. Pop 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 1192 - 1193 (22 tit.)] 
330 |a In the present work, the influence of the amplitude ratio, phase deviation, and undulation number on natural convection in a wavy-walled enclosures differentially heated and filled with a water based nanofluid is studied. The upper and bottom walls are wavy with several undulations. The sinusoidal distribution of temperature is imposed at the vertical walls. The flow, heat, and mass transfer are calculated by solving governing equations for embody the conservation of total mass, momentum, thermal energy, and nanoparticles, taking into account the Darcy-Boussinesq-Buongiorno approximation with second order finite difference method in “stream function-temperature-concentration” formulation. Results are presented in the form of streamlines, isotherm, and isoconcentration contours, and distributions of the average Nusselt number for the different values of the amplitude ratio of the sinusoidal temperature on the right side wall to that on the left side wall (γ = 0-1), phase deviation (φ = 0-π), and undulation number (κ = 1-4). It has been found that variations of the undulation number allow to control the heat and mass transfer rates. Moreover, an increase in the undulation number leads to an extension of the non-homogeneous zones. 
461 |t Thermal Science  |d 2002- 
463 |t Vol. 21, iss. 3  |v [P. 1183-1193]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a free convection 
610 1 |a wavy-walled cavity 
610 1 |a sinusoidal temperature 
610 1 |a porous media 
610 1 |a nanofluids 
610 1 |a numerical method 
610 1 |a свободная конвекция 
610 1 |a пористые среды 
610 1 |a наножидкости 
610 1 |a численные методы 
610 1 |a естественная конвекция 
700 1 |a Sheremet  |b M. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115 
701 1 |a Pop  |b I.  |g Ioan 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20171208  |g RCR 
856 4 |u https://doi.org/10.2298/TSCI140814089S 
942 |c CF