Effect of thermal radiation on natural convection in a square porous cavity filled with a fluid of temperature-dependent viscosity

Bibliographic Details
Parent link:Thermal Science.— , 2002-
Vol. OnLine-First, iss. 00.— 2016.— [11 p.]
Main Author: Astanina M. S. Marina
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра атомных и тепловых электростанций (АТЭС)
Other Authors: Sheremet M. A. Mikhail Aleksandrovich, Umavathi Ja. C. Jawali
Summary:Title screen
A numerical study of the natural convection combined with thermal radiation inside a square porous cavity filled with a fluid of temperature-dependent viscosity is carried out. The side horizontal walls are assumed to be adiabatic while both the left and right vertical walls are kept at constant but different temperatures. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. The governing equations formulated in dimensionless stream function, vorticity and temperature variables are solved using finite difference method. A parametric analysis illustrating the effects of the radiation parameter (0 ≤ Rd ≤ 10), Darcy number (10-5 ≤ Da ≤ 10-2) and viscosity variation parameter (0 ≤ C ≤ 6) on fluid flow and heat transfer is implemented. The results show an essential intensification of convective flow with an increase in the radiation parameter.
Language:English
Published: 2016
Subjects:
Online Access:https://doi.org/10.2298/TSCI150722164A
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656716

MARC

LEADER 00000naa0a2200000 4500
001 656716
005 20250404162219.0
035 |a (RuTPU)RU\TPU\network\23182 
090 |a 656716 
100 |a 20171208d2016 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Effect of thermal radiation on natural convection in a square porous cavity filled with a fluid of temperature-dependent viscosity  |f M. S. Astanina, M. A. Sheremet, Ja. C. Umavathi 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 21 tit.] 
330 |a A numerical study of the natural convection combined with thermal radiation inside a square porous cavity filled with a fluid of temperature-dependent viscosity is carried out. The side horizontal walls are assumed to be adiabatic while both the left and right vertical walls are kept at constant but different temperatures. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. The governing equations formulated in dimensionless stream function, vorticity and temperature variables are solved using finite difference method. A parametric analysis illustrating the effects of the radiation parameter (0 ≤ Rd ≤ 10), Darcy number (10-5 ≤ Da ≤ 10-2) and viscosity variation parameter (0 ≤ C ≤ 6) on fluid flow and heat transfer is implemented. The results show an essential intensification of convective flow with an increase in the radiation parameter. 
461 |t Thermal Science  |d 2002- 
463 |t Vol. OnLine-First, iss. 00  |v [11 p.]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a thermal radiation 
610 1 |a natural convection 
610 1 |a temperature-dependent viscosity 
610 1 |a porous medium 
610 1 |a square cavity 
610 1 |a numerical method 
610 1 |a тепловое излучение 
610 1 |a естественная конвекция 
610 1 |a вязкость 
610 1 |a пористая среда 
610 1 |a численные методы 
700 1 |a Astanina  |b M. S.  |g Marina 
701 1 |a Sheremet  |b M. A.  |c physicist  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1983-  |g Mikhail Aleksandrovich  |3 (RuTPU)RU\TPU\pers\35115  |9 18390 
701 1 |a Umavathi  |b Ja. C.  |g Jawali 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра атомных и тепловых электростанций (АТЭС)  |3 (RuTPU)RU\TPU\col\18683 
801 2 |a RU  |b 63413507  |c 20171208  |g RCR 
856 4 |u https://doi.org/10.2298/TSCI150722164A 
942 |c CF