Laser plume evolution in the process of nanopowder preparation using an ytterbium fibre laser

Dettagli Bibliografici
Parent link:Quantum Electronics.— , 1971-
Vol. 46, № 9.— 2016.— [P. 821-828]
Enti autori: Национальный исследовательский Томский политехнический университет (ТПУ) Институт неразрушающего контроля (ИНК) Кафедра промышленной и медицинской электроники (ПМЭ), Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра высоковольтной электрофизики и сильноточной электроники (ВЭСЭ)
Altri autori: Osipov V. V. Vladimir Vasiljevich, Evtushenko G. S. Gennady Sergeevich, Lisenkov V. V. Vasily Viktorovich, Platonov V. V. Vladimir, Podkin A. V., Tikhonov E. V. Evgeny Vasiljevich, Trigub M. V. Maksim Viktorovich, Fedorov K. V. Kirill Valerjevich
Riassunto:Title screen
We study the laser plume dynamics by means of highspeed shooting in the intrinsic light, as well as using the shadow method with a laser monitor. It is found that the laser plume arising under the impact of a radiation pulse from an ytterbium fibre laser with a power of 670 W on a Nd : Y2O3 target with an Nd concentration of 1 mol % is first a plasma consisting of the target material vapour, and then becomes a mixture of vapour and droplets. The first droplets in this plasma appear in ~200 μs after the formation of the laser plume, and in 400 - 500 μs the major part of the substance is removed in the form of liquid droplets. We have also found that the depth of the laser-produced crater linearly depends on the laser pulse duration, thus confirming the absence of essential shielding of laser radiation by melt droplets. The higher the target transparency, the longer the delay time of the formation of the laser plume and the greater its spread. Sometimes, instead of the laser plume formation, one can observe a light flash inside a semitransparent target. The explanation of these results is presented.
Режим доступа: по договору с организацией-держателем ресурса
Lingua:inglese
Pubblicazione: 2016
Soggetti:
Accesso online:https://doi.org/10.1070/QEL16023
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656456

MARC

LEADER 00000naa0a2200000 4500
001 656456
005 20250404105757.0
035 |a (RuTPU)RU\TPU\network\22897 
090 |a 656456 
100 |a 20171115d2016 k||y0rusy50 ba 
101 1 |a eng 
102 |a RU 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Laser plume evolution in the process of nanopowder preparation using an ytterbium fibre laser  |f V. V. Osipov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a We study the laser plume dynamics by means of highspeed shooting in the intrinsic light, as well as using the shadow method with a laser monitor. It is found that the laser plume arising under the impact of a radiation pulse from an ytterbium fibre laser with a power of 670 W on a Nd : Y2O3 target with an Nd concentration of 1 mol % is first a plasma consisting of the target material vapour, and then becomes a mixture of vapour and droplets. The first droplets in this plasma appear in ~200 μs after the formation of the laser plume, and in 400 - 500 μs the major part of the substance is removed in the form of liquid droplets. We have also found that the depth of the laser-produced crater linearly depends on the laser pulse duration, thus confirming the absence of essential shielding of laser radiation by melt droplets. The higher the target transparency, the longer the delay time of the formation of the laser plume and the greater its spread. Sometimes, instead of the laser plume formation, one can observe a light flash inside a semitransparent target. The explanation of these results is presented. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Quantum Electronics  |d 1971- 
463 |t Vol. 46, № 9  |v [P. 821-828]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a laser plume 
610 1 |a laser monitor 
610 1 |a gas-phase method of nanoparticle preparation 
610 1 |a ytterbium fibre laser 
610 1 |a лазерные мониторы 
610 1 |a газофазные методы 
610 1 |a наночастицы 
610 1 |a иттербий-волоконный лазер 
701 1 |a Osipov  |b V. V.  |g Vladimir Vasiljevich 
701 1 |a Evtushenko  |b G. S.  |c Doctor of Technical Sciences, Professor of Tomsk Polytechnic University (TPU)  |c Russian specialist in electrophysics  |f 1947-  |g Gennady Sergeevich  |3 (RuTPU)RU\TPU\pers\29009  |9 13729 
701 1 |a Lisenkov  |b V. V.  |g Vasily Viktorovich 
701 1 |a Platonov  |b V. V.  |g Vladimir 
701 1 |a Podkin  |b A. V. 
701 1 |a Tikhonov  |b E. V.  |g Evgeny Vasiljevich 
701 1 |a Trigub  |b M. V.  |c specialist in the field of non-destructive testing  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1987-  |g Maksim Viktorovich  |3 (RuTPU)RU\TPU\pers\31242  |9 15437 
701 1 |a Fedorov  |b K. V.  |g Kirill Valerjevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт неразрушающего контроля (ИНК)  |b Кафедра промышленной и медицинской электроники (ПМЭ)  |3 (RuTPU)RU\TPU\col\18719 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт физики высоких технологий (ИФВТ)  |b Кафедра высоковольтной электрофизики и сильноточной электроники (ВЭСЭ)  |3 (RuTPU)RU\TPU\col\22618 
801 2 |a RU  |b 63413507  |c 20171115  |g RCR 
856 4 |u https://doi.org/10.1070/QEL16023 
942 |c CF