Terahertz electromagnetic field propagation in human tissues: A study on communication capabilities

Bibliographic Details
Parent link:Nano Communication Networks
Vol. 10.— 2016.— [P. 51-59]
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра систем управления и мехатроники (СУМ)
Other Authors: Piro G. Giuseppe, Bia P. Pietro, Boggia G. Gennaro, Karatelli D. Diego, Grieco L. A. Luigi Alfredo, Mescia L. Luciano
Summary:Title screen
A Body Area Nano-NETwork represents a system of biomedical nano-devices that, equipped with sensing, computing, and communication capabilities, can be implanted, ingested, or worn by humans for collecting diagnostic information and tuning medical treatments. The communication among these nano-devices can be enabled by graphene-based nano-antennas, which generate electromagnetic waves in the Terahertz band. However, from a perspective of the electromagnetic field propagation, human tissues generally introduce high losses that significantly impair the communication process, thus limiting communication ranges. In this context, the aim of this contribution is to study the communication capabilities of a Body Area Nano-NETwork, by carefully taking into account the inhomogeneous and disordered structure offered by biological tissues. To this end, the propagation of Pulsed Electric Fields in a stratified media stack made up by stratum corneum, epidermis, dermis, and fat has been carefully modeled.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2016
Subjects:
Online Access:https://doi.org/10.1016/j.nancom.2016.07.010
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656391
Description
Summary:Title screen
A Body Area Nano-NETwork represents a system of biomedical nano-devices that, equipped with sensing, computing, and communication capabilities, can be implanted, ingested, or worn by humans for collecting diagnostic information and tuning medical treatments. The communication among these nano-devices can be enabled by graphene-based nano-antennas, which generate electromagnetic waves in the Terahertz band. However, from a perspective of the electromagnetic field propagation, human tissues generally introduce high losses that significantly impair the communication process, thus limiting communication ranges. In this context, the aim of this contribution is to study the communication capabilities of a Body Area Nano-NETwork, by carefully taking into account the inhomogeneous and disordered structure offered by biological tissues. To this end, the propagation of Pulsed Electric Fields in a stratified media stack made up by stratum corneum, epidermis, dermis, and fat has been carefully modeled.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.nancom.2016.07.010