Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis

Бібліографічні деталі
Parent link:Strategies in Trauma and Limb Reconstruction
Vol. 12, iss. 2.— 2017.— [P. 107–113]
Співавтор: Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра экспериментальной физики (ЭФ)
Інші автори: Popkov A. V. Arnold Vasiljevich, Gorbach E. N. Elena Nikolaevna, Kononovich N. A. Nataljya Andreevna, Popkov D. A. Dmitry Arnoldovich, Tverdokhlebov S. I. Sergei Ivanovich, Shesterikov E. V. Evgeny Viktorovich
Резюме:Title screen
A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium–phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires’ pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes.
Режим доступа: по договору с организацией-держателем ресурса
Мова:Англійська
Опубліковано: 2017
Предмети:
Онлайн доступ:https://doi.org/10.1007/s11751-017-0282-x
Формат: Електронний ресурс Частина з книги
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656320

MARC

LEADER 00000naa0a2200000 4500
001 656320
005 20250403155808.0
035 |a (RuTPU)RU\TPU\network\22761 
090 |a 656320 
100 |a 20171108d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis  |f A. V. Popkov [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 21 tit.] 
330 |a A lot of research was conducted on the use of various biomaterials in orthopedic surgery. Our study investigated the effects of nanostructured calcium–phosphate coating on metallic implants introduced into the bone marrow canal. Stainless steel or titanium 2-mm wires (groups 1 and 2, respectively), and hydroxyapatite-coated stainless steel or titanium wires of the same diameter (groups 3 and 4, respectively) were introduced into the tibial bone marrow canal of 20 dogs (each group = 5 dogs). Hydroxyapatite coating was deposited on the wires with the method of microarc oxidation. Light microscopy to study histological diaphyseal transverse sections, scanning electron microscopy to study the bone marrow area around the implant and an X-ray electron probe analyzer to study the content of calcium and phosphorus were used to investigate bioactivity and osteointegration after a four weeks period. Osteointegration was also assessed by measuring wires’ pull-off strength with a sensor dynamometer. Bone formation was observed round the wires in the bone marrow canal in all the groups. Its intensity depended upon the features of wire surfaces and implant materials. Maximum percentage volume of trabecular bone was present in the bone marrow canals of group 4 dogs that corresponded to a mean of 27.1 ± 0.14%, while it was only 6.7% in group 1. The coating in groups 3 and 4 provided better bioactivity and osteointegration. Hydroxyapatite-coated titanium wires showed the highest degree of bone formation around them and greater pull-off strength. Nanostructured hydroxyapatite coating of metallic wires induces an expressed bone formation and provides osteointegration. Hydroxyapatite-coated wires could be used along with external fixation for bone repair enhancement in diaphyseal fractures, management of osteogenesis imperfecta and correction of bone deformities in phosphate diabetes. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Strategies in Trauma and Limb Reconstruction 
463 |t Vol. 12, iss. 2  |v [P. 107–113]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a остеосинтез 
610 1 |a гидроксиапатиты 
610 1 |a покрытия 
610 1 |a остеосинтез 
701 1 |a Popkov  |b A. V.  |g Arnold Vasiljevich 
701 1 |a Gorbach  |b E. N.  |g Elena Nikolaevna 
701 1 |a Kononovich  |b N. A.  |g Nataljya Andreevna 
701 1 |a Popkov  |b D. A.  |g Dmitry Arnoldovich 
701 1 |a Tverdokhlebov  |b S. I.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science  |f 1961-  |g Sergei Ivanovich  |3 (RuTPU)RU\TPU\pers\30855  |9 15101 
701 1 |a Shesterikov  |b E. V.  |c physicist  |c leading engineer of Tomsk Polytechnic University  |f 1979-  |g Evgeny Viktorovich  |3 (RuTPU)RU\TPU\pers\35793 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра экспериментальной физики (ЭФ)  |3 (RuTPU)RU\TPU\col\21255 
801 2 |a RU  |b 63413507  |c 20171108  |g RCR 
856 4 |u https://doi.org/10.1007/s11751-017-0282-x 
942 |c CF