Evaluation and prediction of solar radiation for energy management based on neural networks

Bibliographic Details
Parent link:Journal of Physics: Conference Series
Vol. 881 : Innovations in Non-Destructive Testing (SibTest 2017).— 2017.— [012036, 11 p.]
Main Author: Aldoshina O. V.
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ)
Other Authors: Dinh Van Tai
Summary:Title screen
Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2017
Subjects:
Online Access:http://dx.doi.org/10.1088/1742-6596/881/1/012036
http://earchive.tpu.ru/handle/11683/43867
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656312

MARC

LEADER 00000nla2a2200000 4500
001 656312
005 20231101134920.0
035 |a (RuTPU)RU\TPU\network\22753 
035 |a RU\TPU\network\22740 
090 |a 656312 
100 |a 20171108a2017 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Evaluation and prediction of solar radiation for energy management based on neural networks  |f O. V. Aldoshina, Dinh Van Tai 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 10 tit.] 
330 |a Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 0 |0 (RuTPU)RU\TPU\network\3526  |t Journal of Physics: Conference Series 
463 0 |0 (RuTPU)RU\TPU\network\22639  |t Vol. 881 : Innovations in Non-Destructive Testing (SibTest 2017)  |o International Conference, 27–30 June 2017, Novosibirsk, Russian Federation  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU)  |v [012036, 11 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a прогнозирование 
610 1 |a солнечная радиация 
610 1 |a управление 
610 1 |a энергия 
610 1 |a нейронные сети 
610 1 |a возобновляемые источники энергии 
610 1 |a интеллектуальные сети 
610 1 |a метеорологический мониторинг 
610 1 |a энергетические системы 
610 1 |a электрические нагрузки 
700 1 |a Aldoshina  |b O. V. 
701 0 |a Dinh Van Tai 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |c (2009- )  |2 stltpush  |3 (RuTPU)RU\TPU\col\15902 
801 2 |a RU  |b 63413507  |c 20171109  |g RCR 
856 4 |u http://dx.doi.org/10.1088/1742-6596/881/1/012036 
856 4 |u http://earchive.tpu.ru/handle/11683/43867 
942 |c CF