Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea

Bibliografiska uppgifter
Parent link:Cryosphere.— , 2008-
Vol. 11, iss. 5.— 2017.— [P. 2305-2317]
Institutionella upphovsmän: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра геологии и разведки полезных ископаемых (ГРПИ) Международная научно-образовательная лаборатория изучения углерода арктических морей (МНОЛ ИУАМ), Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра геологии и разведки полезных ископаемых (ГРПИ)
Övriga upphovsmän: Charkin A. N. Aleksandr Nikolaevich, Van Der Loeff M. R. Michiel Rutgers, Shakhova N. E. Nataljya Evgenjevna, Gustafsson O. Orjan, Dudarev O. V. Oleg Viktorovich, Cherepnev M. S. Maksim Sviatoslavovich, Salyuk A. N. Anatoly Nazarovich, Koshurnikov A. V. Andrey Viktorovich, Spivak E. Eduard, Gunar A. Yu. Aleksey Yu., Ruban A. S. Aleksey Sergeevich, Semiletov I. P. Igor Petrovich
Sammanfattning:Title screen
It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (224Ra, 223Ra, 228Ra, and 226Ra) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. 224Ra and 224Ra / 223Ra diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1. 7 × 106 m3 d−1 or 19.9 m3 s−1, which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients.
Språk:engelska
Publicerad: 2017
Ämnen:
Länkar:http://earchive.tpu.ru/handle/11683/65325
https://doi.org/10.5194/tc-11-2305-2017
Materialtyp: Elektronisk Bokavsnitt
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656236

MARC

LEADER 00000naa0a2200000 4500
001 656236
005 20250403153522.0
035 |a (RuTPU)RU\TPU\network\22671 
090 |a 656236 
100 |a 20171102d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a DE 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Discovery and characterization of submarine groundwater discharge in the Siberian Arctic seas: a case study in the Buor-Khaya Gulf, Laptev Sea  |f A. N. Charkin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 2324-2327] 
330 |a It has been suggested that increasing terrestrial water discharge to the Arctic Ocean may partly occur as submarine groundwater discharge (SGD), yet there are no direct observations of this phenomenon in the Arctic shelf seas. This study tests the hypothesis that SGD does exist in the Siberian Arctic Shelf seas, but its dynamics may be largely controlled by complicated geocryological conditions such as permafrost. The field-observational approach in the southeastern Laptev Sea used a combination of hydrological (temperature, salinity), geological (bottom sediment drilling, geoelectric surveys), and geochemical (224Ra, 223Ra, 228Ra, and 226Ra) techniques. Active SGD was documented in the vicinity of the Lena River delta with two different operational modes. In the first system, groundwater discharges through tectonogenic permafrost talik zones was registered in both winter and summer. The second SGD mechanism was cryogenic squeezing out of brine and water-soluble salts detected on the periphery of ice hummocks in the winter. The proposed mechanisms of groundwater transport and discharge in the Arctic land-shelf system is elaborated. Through salinity vs. 224Ra and 224Ra / 223Ra diagrams, the three main SGD-influenced water masses were identified and their end-member composition was constrained. Based on simple mass-balance box models, discharge rates at sites in the submarine permafrost talik zone were 1. 7 × 106 m3 d−1 or 19.9 m3 s−1, which is much higher than the April discharge of the Yana River. Further studies should apply these techniques on a broader scale with the objective of elucidating the relative importance of the SGD transport vector relative to surface freshwater discharge for both water balance and aquatic components such as dissolved organic carbon, carbon dioxide, methane, and nutrients. 
461 |t Cryosphere  |d 2008- 
463 |t Vol. 11, iss. 5  |v [P. 2305-2317]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Арктика 
610 1 |a исследование 
610 1 |a Северный Ледовитый океан 
610 1 |a наземные воды 
610 1 |a сброс 
701 1 |a Charkin  |b A. N.  |c geologist  |c engineer-researcher of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences  |f 1980-  |g Aleksandr Nikolaevich  |3 (RuTPU)RU\TPU\pers\35441 
701 1 |a Van Der Loeff  |b M. R.  |g Michiel Rutgers 
701 1 |a Shakhova  |b N. E.  |c geologist  |c Professor of Tomsk Polytechnic University, doctor of geological-mineralogical Sciences  |f 1959-  |g Nataljya Evgenjevna  |3 (RuTPU)RU\TPU\pers\35374 
701 1 |a Gustafsson  |b O.  |g Orjan 
701 1 |a Dudarev  |b O. V.  |c geologist  |c researcher of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences  |f 1955-  |g Oleg Viktorovich  |3 (RuTPU)RU\TPU\pers\35379 
701 1 |a Cherepnev  |b M. S.  |c Specialist in the field of radiation safety  |c Engineer of Tomsk Polytechnic University  |f 1987-  |g Maksim Sviatoslavovich  |3 (RuTPU)RU\TPU\pers\34941 
701 1 |a Salyuk  |b A. N.  |g Anatoly Nazarovich 
701 1 |a Koshurnikov  |b A. V.  |g Andrey Viktorovich 
701 1 |a Spivak  |b E.  |g Eduard 
701 1 |a Gunar  |b A. Yu.  |g Aleksey Yu. 
701 1 |a Ruban  |b A. S.  |c geologist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Aleksey Sergeevich  |3 (RuTPU)RU\TPU\pers\34023  |9 17590 
701 1 |a Semiletov  |b I. P.  |c geographer  |c Professor of Tomsk Polytechnic University, doctor of geographical Sciences  |f 1955-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\34220 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра геологии и разведки полезных ископаемых (ГРПИ)  |b Международная научно-образовательная лаборатория изучения углерода арктических морей (МНОЛ ИУАМ)  |3 (RuTPU)RU\TPU\col\20711 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра геологии и разведки полезных ископаемых (ГРПИ)  |3 (RuTPU)RU\TPU\col\18660 
801 2 |a RU  |b 63413507  |c 20210514  |g RCR 
856 4 |u http://earchive.tpu.ru/handle/11683/65325 
856 4 |u https://doi.org/10.5194/tc-11-2305-2017 
942 |c CF