The multi-dimensional ensemble empirical mode decomposition (MEEMD)

Bibliographic Details
Parent link:Journal of Thermal Analysis and Calorimetry
Vol. 128, iss. 3.— 2017.— [P. 1841–1858]
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт неразрушающего контроля (ИНК) Лаборатория № 34 (Тепловых методов контроля)
Other Authors: Yao Yuan, Sfarra S. Stefano, Ibarra-Castando C. Clemente, You R. Renchun, Maldague X. P. V. Xavier
Summary:Title screen
With a view to map the health status of mosaics, non-destructive testing methods ought to be used for data collection. Among these, the infrared thermography is highly recommended since it is non-contact, non-intrusive, non-invasive and able to convert the invisible thermal energy into a video signal, in which the energy level is usually correlated with a colour or a greyscale. The need to provide the position of sub-superficial defects in the clear way is of paramount importance when the diagnostician is not the final client. In the cultural heritage field, raw thermograms, sometimes, do not provide interesting results for the restorer, since they are affected by an undesirable content of noise that limits the detection of what is present beneath the surface. In this work, the multi-dimensional ensemble empirical mode decomposition technique was used—to the best of our knowledge for the first time—as regards the thermographic diagnosis of mosaics. It seems to overcome the thermal barrier of the tessellatum layer, composed by aggregates of different natures, as typical in the Roman era. The results obtained after the inspection via a very long pulse are encouraging, above all when compared with the results coming from recent and non-recent algorithms also applied herein. The use of intelligent sensors placed inside and outside the mosaic sample, which measured the temperature evolution along the heating-up and cooling-down phases, helped in the understanding the optimal heat flux to be provided.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2017
Subjects:
Online Access:https://doi.org/10.1007/s10973-016-6082-6
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656129

MARC

LEADER 00000naa0a2200000 4500
001 656129
005 20250402102335.0
035 |a (RuTPU)RU\TPU\network\22532 
090 |a 656129 
100 |a 20171025d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a HU 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The multi-dimensional ensemble empirical mode decomposition (MEEMD)  |f Yao Yuan [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 1857-1858 (61 tit.)] 
330 |a With a view to map the health status of mosaics, non-destructive testing methods ought to be used for data collection. Among these, the infrared thermography is highly recommended since it is non-contact, non-intrusive, non-invasive and able to convert the invisible thermal energy into a video signal, in which the energy level is usually correlated with a colour or a greyscale. The need to provide the position of sub-superficial defects in the clear way is of paramount importance when the diagnostician is not the final client. In the cultural heritage field, raw thermograms, sometimes, do not provide interesting results for the restorer, since they are affected by an undesirable content of noise that limits the detection of what is present beneath the surface. In this work, the multi-dimensional ensemble empirical mode decomposition technique was used—to the best of our knowledge for the first time—as regards the thermographic diagnosis of mosaics. It seems to overcome the thermal barrier of the tessellatum layer, composed by aggregates of different natures, as typical in the Roman era. The results obtained after the inspection via a very long pulse are encouraging, above all when compared with the results coming from recent and non-recent algorithms also applied herein. The use of intelligent sensors placed inside and outside the mosaic sample, which measured the temperature evolution along the heating-up and cooling-down phases, helped in the understanding the optimal heat flux to be provided. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Journal of Thermal Analysis and Calorimetry 
463 |t Vol. 128, iss. 3  |v [P. 1841–1858]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a infrared thermography 
610 1 |a homogeneous thermal radiation 
610 1 |a non-destructive testing techniques 
610 1 |a defects 
610 1 |a mosaic 
610 1 |a conduction 
610 1 |a инфракрасная термография 
610 1 |a тепловое излучение 
610 1 |a неразрушающий контроль 
610 1 |a методы 
610 1 |a дефекты 
610 1 |a мозаичность 
610 1 |a проводимость 
701 0 |a Yao Yuan 
701 1 |a Sfarra  |b S.  |c specialist in the field of non-destructive testing  |c Researcher of Tomsk Polytechnic University  |f 1979-  |g Stefano  |3 (RuTPU)RU\TPU\pers\38660 
701 1 |a Ibarra-Castando  |b C.  |g Clemente 
701 1 |a You  |b R.  |g Renchun 
701 1 |a Maldague  |b X. P. V.  |g Xavier 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт неразрушающего контроля (ИНК)  |b Лаборатория № 34 (Тепловых методов контроля)  |3 (RuTPU)RU\TPU\col\19616 
801 2 |a RU  |b 63413507  |c 20171025  |g RCR 
856 4 |u https://doi.org/10.1007/s10973-016-6082-6 
942 |c CF