Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams

Detalles Bibliográficos
Parent link:International Journal of Non-Linear Mechanics
Vol. 93.— 2017.— [P. 96-105]
Autor Corporativo: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра инженерной графики и промышленного дизайна (ИГПД) Научно-учебная лаборатория 3D моделирования (НУЛ 3DМ)
Outros autores: Krysko A. V. Anton Vadimovich, Awrejcewicz J. Jan, Zhigalov M. V. Maksim, Pavlov S. P., Krysko V. A. Vadim
Summary:Title screen
In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied.
Режим доступа: по договору с организацией-держателем ресурса
Idioma:inglés
Publicado: 2017
Subjects:
Acceso en liña:https://doi.org/10.1016/j.ijnonlinmec.2017.03.005
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=656127

MARC

LEADER 00000naa0a2200000 4500
001 656127
005 20250402102152.0
035 |a (RuTPU)RU\TPU\network\22530 
035 |a RU\TPU\network\21574 
090 |a 656127 
100 |a 20171025d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1: Governing equations and static analysis of flexible beams  |f A. V. Krysko [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 104-105 (59 tit.)] 
330 |a In the first part of the paper we employ the Sheremetev-Pelekh-Reddy-Levinson hypotheses, which yield a non-linear mathematical model of a beam taking into account geometric and physical non-linearity as well as transverse shear based on the modified couple stress theory. The general model includes both Bernoulli-Euler and Timoshenko models with/without geometric/physical non-linearity, and the size-dependent beam behaviour.In addition, we present results of the development of the relaxation method for solution to numerous static problems. The influence of the size-dependent coefficient on the load-deflection and stress-strain states of the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson mathematical models has been also studied. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t International Journal of Non-Linear Mechanics 
463 |t Vol. 93  |v [P. 96-105]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a наномеханика 
610 1 |a beam models 
610 1 |a vibrations chaos 
610 1 |a nano-mechanics 
701 1 |a Krysko  |b A. V.  |c specialist in the field of Informatics and computer engineering  |c programmer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences  |f 1967-  |g Anton Vadimovich  |3 (RuTPU)RU\TPU\pers\36883 
701 1 |a Awrejcewicz  |b J.  |g Jan 
701 1 |a Zhigalov  |b M. V.  |g Maksim 
701 1 |a Pavlov  |b S. P. 
701 1 |a Krysko  |b V. A.  |g Vadim 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |b Кафедра инженерной графики и промышленного дизайна (ИГПД)  |b Научно-учебная лаборатория 3D моделирования (НУЛ 3DМ)  |3 (RuTPU)RU\TPU\col\20373 
801 2 |a RU  |b 63413507  |c 20171025  |g RCR 
856 4 |u https://doi.org/10.1016/j.ijnonlinmec.2017.03.005 
942 |c CF