Neurodynamic non-invasive fetal electrocardiogram extraction

Bibliographic Details
Parent link:Information, Intelligence, Systems and Applications (IISA): International Conference, 13-15 July 2016, Chalkidiki, Greece. [16544037].— , 2016
Main Author: Devyatykh D. V. Dmitry Vladimirovich
Corporate Authors: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра прикладной математики (ПМ), Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра программной инженерии (ПИ), Национальный исследовательский Томский политехнический университет (ТПУ) Институт неразрушающего контроля (ИНК) Учебно-методический отдел (УМО)
Other Authors: Gerget O. M. Olga Mikhailovna
Summary:Title screen
Fetal electrocardiography in contrary to adult is not that well represented in publications, yet circulatory system of the fetus is probably the most valuable and crucial biological infrastructure. Fetal heart ratio, form of QRS-wave and dynamics of cardiovascular system activity allow estimating fetus state, maturity, possibilities of heart abnormality occasion. This information can be received with guaranteed accuracy through Doppler-ultrasound procedure, however duration of such kind of monitoring is limited. Fetal electrocardiogram is an obvious source of information about fetal heart activity. However, because of low signal-to-noise ratio and prevailing of maternal component, non-invasive ways of acquiring this signal do not guarantee absolute accuracy. Problems of non-invasive electrocardiography demand complex mathematical approaches because maternal and fetal R-peaks overlap in time and frequency domains and have similar morphological structure of heart waves. In this paper we propose approach for extracting fetal electrocardiography from abdominal signal, which is based on dynamic neural network. The common problem for both dynamic and deep learning is caused by linearity of backpropagation and thus vanishing or exploding of gradients occurs. We proposed resilient propagation through time approach that unites training based on sign of derivative and parallel unfolding. We compared developed algorithm with blind source separation through independent component analysis and noted several important advantages that our model delivers - accuracy does not depend on: length of signal; amount of independent channels.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2016
Subjects:
Online Access:https://doi.org/10.1109/IISA.2016.7785333
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655951

MARC

LEADER 00000naa0a2200000 4500
001 655951
005 20251127104653.0
035 |a (RuTPU)RU\TPU\network\22291 
035 |a RU\TPU\network\16431 
090 |a 655951 
100 |a 20171013d2016 k||y0rusy50 ba 
101 0 |a eng 
102 |a GR 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Neurodynamic non-invasive fetal electrocardiogram extraction  |f D. V. Devyatykh, O. M. Gerget 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 3 tit.] 
330 |a Fetal electrocardiography in contrary to adult is not that well represented in publications, yet circulatory system of the fetus is probably the most valuable and crucial biological infrastructure. Fetal heart ratio, form of QRS-wave and dynamics of cardiovascular system activity allow estimating fetus state, maturity, possibilities of heart abnormality occasion. This information can be received with guaranteed accuracy through Doppler-ultrasound procedure, however duration of such kind of monitoring is limited. Fetal electrocardiogram is an obvious source of information about fetal heart activity. However, because of low signal-to-noise ratio and prevailing of maternal component, non-invasive ways of acquiring this signal do not guarantee absolute accuracy. Problems of non-invasive electrocardiography demand complex mathematical approaches because maternal and fetal R-peaks overlap in time and frequency domains and have similar morphological structure of heart waves. In this paper we propose approach for extracting fetal electrocardiography from abdominal signal, which is based on dynamic neural network. The common problem for both dynamic and deep learning is caused by linearity of backpropagation and thus vanishing or exploding of gradients occurs. We proposed resilient propagation through time approach that unites training based on sign of derivative and parallel unfolding. We compared developed algorithm with blind source separation through independent component analysis and noted several important advantages that our model delivers - accuracy does not depend on: length of signal; amount of independent channels. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
463 1 |t Information, Intelligence, Systems and Applications (IISA)  |o International Conference, 13-15 July 2016, Chalkidiki, Greece  |v [16544037]  |o proceedings  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a resilient propagation 
610 1 |a dynamic neural network 
610 1 |a vanishing gradient 
610 1 |a blind source separation 
610 1 |a fetal electrocardiogram 
610 1 |a нейронные сети 
610 1 |a исчезающие градиенты 
610 1 |a эмбриональная электрокардиограмма 
700 1 |a Devyatykh  |b D. V.  |c specialist in the field of informatics and computer technology  |c programmer of Tomsk Polytechnic University  |f 1989-  |g Dmitry Vladimirovich  |3 (RuTPU)RU\TPU\pers\37832 
701 1 |a Gerget  |b O. M.  |c Specialist in the field of informatics and computer technology  |c Professor of Tomsk Polytechnic University, Doctor of Sciences  |f 1974-  |g Olga Mikhailovna  |3 (RuTPU)RU\TPU\pers\31430  |9 15593 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |b Кафедра прикладной математики (ПМ)  |3 (RuTPU)RU\TPU\col\18700 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт кибернетики (ИК)  |b Кафедра программной инженерии (ПИ)  |3 (RuTPU)RU\TPU\col\22918 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт неразрушающего контроля (ИНК)  |b Учебно-методический отдел (УМО)  |3 (RuTPU)RU\TPU\col\18986 
801 1 |a RU  |b 63413507  |c 20141010 
801 2 |a RU  |b 63413507  |c 20171013  |g RCR 
856 4 |u https://doi.org/10.1109/IISA.2016.7785333 
942 |c CF