Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules

Bibliographic Details
Parent link:Colloids and Surfaces B: Biointerfaces
Vol. 157.— 2017.— [P. 481-489]
Corporate Authors: Национальный исследовательский Томский политехнический университет (ТПУ) Управление проректора по научной работе и инновациям (НРиИ) Центр RASA в Томске Лаборатория изучения механизмов нейропротекции (Лаб. ИМН), Национальный исследовательский Томский политехнический университет (ТПУ) Физико-технический институт (ФТИ) Кафедра экспериментальной физики (ЭФ)
Other Authors: Kudryavtseva V. L. Valeriya Lvovna, Zhao L. Li, Tverdokhlebov S. I. Sergei Ivanovich, Sukhorukov G. B.
Summary:Title screen
We propose the use of polylactic acid/calcium carbonate (PLA/CaCO3) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO3 systems. We used CaCO3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO3/PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2017
Subjects:
Online Access:https://doi.org/10.1016/j.colsurfb.2017.06.011
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655873

MARC

LEADER 00000naa0a2200000 4500
001 655873
005 20250331120944.0
035 |a (RuTPU)RU\TPU\network\22203 
090 |a 655873 
100 |a 20171011d2017 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules  |f V. L. Kudryavtseva [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 488-489 (44 tit.)] 
330 |a We propose the use of polylactic acid/calcium carbonate (PLA/CaCO3) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO3 systems. We used CaCO3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO3/PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Colloids and Surfaces B: Biointerfaces 
463 |t Vol. 157  |v [P. 481-489]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a биодеградируемые полимеры 
610 1 |a микрокапсулы 
610 1 |a карбонат кальция 
701 1 |a Kudryavtseva  |b V. L.  |c physicist  |c Engineer of Tomsk Polytechnic University  |f 1993-  |g Valeriya Lvovna  |3 (RuTPU)RU\TPU\pers\38564 
701 1 |a Zhao  |b L.  |g Li 
701 1 |a Tverdokhlebov  |b S. I.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science  |f 1961-  |g Sergei Ivanovich  |3 (RuTPU)RU\TPU\pers\30855  |9 15101 
701 1 |a Sukhorukov  |b G. B. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Управление проректора по научной работе и инновациям (НРиИ)  |b Центр RASA в Томске  |b Лаборатория изучения механизмов нейропротекции (Лаб. ИМН)  |3 (RuTPU)RU\TPU\col\21815 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Физико-технический институт (ФТИ)  |b Кафедра экспериментальной физики (ЭФ)  |3 (RuTPU)RU\TPU\col\21255 
801 2 |a RU  |b 63413507  |c 20171011  |g RCR 
856 4 |u https://doi.org/10.1016/j.colsurfb.2017.06.011 
942 |c CF