Stability of curvilinear Euler-Bernoulli beams in temperature fields
| Parent link: | International Journal of Non-Linear Mechanics Vol. 94.— 2017.— [P. 207-215] |
|---|---|
| Institutionell upphovsman: | |
| Övriga upphovsmän: | , , , |
| Sammanfattning: | Title screen In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles. Режим доступа: по договору с организацией-держателем ресурса |
| Språk: | engelska |
| Publicerad: |
2017
|
| Ämnen: | |
| Länkar: | https://doi.org/10.1016/j.ijnonlinmec.2016.12.004 |
| Materialtyp: | Elektronisk Bokavsnitt |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655722 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 655722 | ||
| 005 | 20250331101629.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\22002 | ||
| 035 | |a RU\TPU\network\21574 | ||
| 090 | |a 655722 | ||
| 100 | |a 20170925d2017 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Stability of curvilinear Euler-Bernoulli beams in temperature fields |f A. V. Krysko [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: p. 214-215 (36 tit.)] | ||
| 330 | |a In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t International Journal of Non-Linear Mechanics | ||
| 463 | |t Vol. 94 |v [P. 207-215] |d 2017 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a электронные пучки | |
| 610 | 1 | |a теплопередача | |
| 610 | 1 | |a Flexible Euler-Bernoulli beam | |
| 610 | 1 | |a Heat transfer | |
| 610 | 1 | |a Stability | |
| 610 | 1 | |a Curvilinear beam | |
| 701 | 1 | |a Krysko |b A. V. |c specialist in the field of Informatics and computer engineering |c programmer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences |f 1967- |g Anton Vadimovich |3 (RuTPU)RU\TPU\pers\36883 | |
| 701 | 1 | |a Awrejcewicz |b J. |g Jan | |
| 701 | 1 | |a Kutepov |b I. |g Igor | |
| 701 | 1 | |a Krysko |b V. A. |g Vadim | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт кибернетики (ИК) |b Кафедра инженерной графики и промышленного дизайна (ИГПД) |b Научно-учебная лаборатория 3D моделирования (НУЛ 3DМ) |3 (RuTPU)RU\TPU\col\20373 |
| 801 | 2 | |a RU |b 63413507 |c 20170925 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.ijnonlinmec.2016.12.004 | |
| 942 | |c CF | ||