Stability of curvilinear Euler-Bernoulli beams in temperature fields

Bibliografske podrobnosti
Parent link:International Journal of Non-Linear Mechanics
Vol. 94.— 2017.— [P. 207-215]
Korporativna značnica: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра инженерной графики и промышленного дизайна (ИГПД) Научно-учебная лаборатория 3D моделирования (НУЛ 3DМ)
Drugi avtorji: Krysko A. V. Anton Vadimovich, Awrejcewicz J. Jan, Kutepov I. Igor, Krysko V. A. Vadim
Izvleček:Title screen
In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles.
Режим доступа: по договору с организацией-держателем ресурса
Izdano: 2017
Teme:
Online dostop:https://doi.org/10.1016/j.ijnonlinmec.2016.12.004
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655722
Opis
Izvleček:Title screen
In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.ijnonlinmec.2016.12.004