Developing a method for increasing the service life of a higher paraffin dehydrogenation catalyst, based on the nonstationary kinetic model of a reactor

Detalles Bibliográficos
Parent link:Catalysis in Industry: Scientific Journal
Vol. 4, iss. 2.— 2012.— [P. 110-120]
Otros Autores: Ivashkina E. N. Elena Nikolaevna, Frantsina E. V. Evgeniya Vladimirovna, Romanovskiy R. V. Rostislav Vladimirovich, Dolganov I. M. Igor Mikhailovich, Ivanchina E. D. Emilia Dmitrievna, Kravtsov A. V. Anatoly Vasilyevich
Sumario:Title screen
The service life of an industrial catalyst can be prolonged by improving the technological conditions of its operation. This allows us to maximally eliminate the catalyst deactivation factors. A specific feature of the catalytic dehydrogenation of hydrocarbons is its nonstationarity produced by the deactivation of catalysts. The results of modeling the industrial catalytic process of C9-C14 paraffin dehydrogenation-the key stage in the production of linear alkylbenzenes-is discussed in this paper. We consider (1) thermodynamic analysis of reactions by means of quantum chemistry, (2) estimation of the kinetic model's parameters by solving the inverse kinetic problem, (3) selection of an equation that describes the coke deactivation of a catalyst, and (4) development of a method for increasing the service life of a dehydrogenation catalyst using a nonstationary model based on the quantitative consideration of the water added to a reactor within a temperature range of 470-490°C. The higher alkane dehydrogenation flowsheet proposed on the basis of these models allows us to predict the operation of a reactor in different water supply regimes. It is shown that the service life of a catalyst grows by 20-30% on the average, if water is fed by increasing portions.
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2012
Materias:
Acceso en línea:http://dx.doi.org/10.1134/S2070050412020079
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655694

MARC

LEADER 00000naa0a2200000 4500
001 655694
005 20250328164341.0
035 |a (RuTPU)RU\TPU\network\21955 
035 |a RU\TPU\network\8111 
090 |a 655694 
100 |a 20170922d2012 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Developing a method for increasing the service life of a higher paraffin dehydrogenation catalyst, based on the nonstationary kinetic model of a reactor  |f E. N. Ivashkina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [Ref.: p. 119-120 (15 tit.)] 
330 |a The service life of an industrial catalyst can be prolonged by improving the technological conditions of its operation. This allows us to maximally eliminate the catalyst deactivation factors. A specific feature of the catalytic dehydrogenation of hydrocarbons is its nonstationarity produced by the deactivation of catalysts. The results of modeling the industrial catalytic process of C9-C14 paraffin dehydrogenation-the key stage in the production of linear alkylbenzenes-is discussed in this paper. We consider (1) thermodynamic analysis of reactions by means of quantum chemistry, (2) estimation of the kinetic model's parameters by solving the inverse kinetic problem, (3) selection of an equation that describes the coke deactivation of a catalyst, and (4) development of a method for increasing the service life of a dehydrogenation catalyst using a nonstationary model based on the quantitative consideration of the water added to a reactor within a temperature range of 470-490°C. The higher alkane dehydrogenation flowsheet proposed on the basis of these models allows us to predict the operation of a reactor in different water supply regimes. It is shown that the service life of a catalyst grows by 20-30% on the average, if water is fed by increasing portions. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Catalysis in Industry  |o Scientific Journal 
463 |t Vol. 4, iss. 2  |v [P. 110-120]  |d 2012 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a ресурсоэффективность 
610 1 |a алканы 
610 1 |a катализаторы 
610 1 |a математическое моделирование 
610 1 |a методы 
610 1 |a квантовая химия 
610 1 |a дезактивация 
701 1 |a Ivashkina  |b E. N.  |c Chemical Engineer  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1983-  |g Elena Nikolaevna  |3 (RuTPU)RU\TPU\pers\31275  |9 15453 
701 1 |a Frantsina  |b E. V.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Evgeniya Vladimirovna  |3 (RuTPU)RU\TPU\pers\32193  |9 16193 
701 1 |a Romanovskiy  |b R. V.  |c Chemical Engineer  |c Engineer of Tomsk Polytechnic University  |f 1987-  |g Rostislav Vladimirovich  |3 (RuTPU)RU\TPU\pers\32191 
701 1 |a Dolganov  |b I. M.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1987-  |g Igor Mikhailovich  |3 (RuTPU)RU\TPU\pers\32216  |9 16216 
701 1 |a Ivanchina  |b E. D.  |c chemist  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1951-  |g Emilia Dmitrievna  |3 (RuTPU)RU\TPU\pers\31274 
701 1 |a Kravtsov  |b A. V.  |c Chemical Engineer  |c Consulting Professor, Doctor of Technical Sciences (DSc)  |f 1938-2012  |g Anatoly Vasilyevich  |3 (RuTPU)RU\TPU\pers\29428 
801 2 |a RU  |b 63413507  |c 20170922  |g RCR 
856 4 |u http://dx.doi.org/10.1134/S2070050412020079 
942 |c CF