Chaotic dynamic buckling of rectangular spherical shells under harmonic lateral load

Dades bibliogràfiques
Parent link:Computers & Structures
Vol. 191.— 2017.— [P. 80-99]
Autor corporatiu: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра инженерной графики и промышленного дизайна (ИГПД) Научно-учебная лаборатория 3D моделирования (НУЛ 3DМ)
Altres autors: Awrejcewicz Ja. Jan, Krysko A. V. Anton Vadimovich, Zhigalov M. V. Maksim, Krysko V. Vadim
Sumari:Title screen
Dynamic bucking criteria for spherical shells of a rectangular form under sinusoidal lateral load are proposed and developed taking into consideration geometric and physical non-linearity. A mathematical model of thin shallow shells is constructed on the basis of the Kirchoff-Love hypothesis and the von Karman geometric non-linearity, whereas the physical non-linearity follows the Ilyushin theory of plastic deformations. Reliability of the results is proved by comparing them with the results obtained by means of higher-order approximations of the Faedo-Galerkin method. Three scenarios (Feigenbaum, Ruelle-Takens-Newhouse and Pomeau-Manneville) are detected while transiting from regular to quasi-periodic/chaotic vibrations.
Режим доступа: по договору с организацией-держателем ресурса
Publicat: 2017
Matèries:
Accés en línia:https://doi.org/10.1016/j.compstruc.2017.06.011
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655668
Descripció
Sumari:Title screen
Dynamic bucking criteria for spherical shells of a rectangular form under sinusoidal lateral load are proposed and developed taking into consideration geometric and physical non-linearity. A mathematical model of thin shallow shells is constructed on the basis of the Kirchoff-Love hypothesis and the von Karman geometric non-linearity, whereas the physical non-linearity follows the Ilyushin theory of plastic deformations. Reliability of the results is proved by comparing them with the results obtained by means of higher-order approximations of the Faedo-Galerkin method. Three scenarios (Feigenbaum, Ruelle-Takens-Newhouse and Pomeau-Manneville) are detected while transiting from regular to quasi-periodic/chaotic vibrations.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1016/j.compstruc.2017.06.011