Graphene nanoribbon winding around carbon nanotube

Detalles Bibliográficos
Parent link:Computational Materials Science
Vol. 135.— 2017.— [P. 99–108]
Autor Corporativo: Национальный исследовательский Томский политехнический университет (ТПУ) Юргинский технологический институт (филиал) (ЮТИ) Кафедра сварочного производства (КСП)
Otros Autores: Savin A. V. Aleksandr Vasiljevich, Korznikova E. A. Elena Aleksandrovna, Dmitriev S. V. Sergey Vladimirovich, Soboleva E. G. Elvira Gomerovna
Sumario:Title screen
Graphene is a one-atom thick carbon sheet with unique combination of physical and mechanical properties promising for many applications. Bending rigidity of graphene is very small and that is why weak van der Waals forces can create secondary structures such as folds, scrolls, etc. Recently the authors offered a model of a chain with particles moving in a plane to simulate properties of such secondary structures. In the present work the model is modified to enable the study of structure and properties of graphene nanoribbon scrolls (GNS) around carbon nanotubes (CNT). With the help of this model possible equilibrium structures are found and their energies are compared. Particularly it is shown that relatively short graphene nanoribbons wrap CNT without a cavity, producing a dense structure. For nanoribbons with larger length there always appears a cavity between GNS and CNT. Then the temperature effect on the GNS-CNT complex is studied. It is found that the dense complexes at elevated temperatures undergo a phase transition to the states with a cavity. This transition is characterized by a sharp increase in the outer radius of GNS. This finding opens a way to design materials with a huge thermal expansion coefficient in a specific temperature range as well as temperature sensors with a great sensitivity.
Режим доступа: по договору с организацией-держателем ресурса
Lenguaje:inglés
Publicado: 2017
Materias:
Acceso en línea:https://doi.org/10.1016/j.commatsci.2017.03.047
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655614

MARC

LEADER 00000naa0a2200000 4500
001 655614
005 20250321162010.0
035 |a (RuTPU)RU\TPU\network\21873 
090 |a 655614 
100 |a 20170919d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Graphene nanoribbon winding around carbon nanotube  |f A. V. Savin [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 107-108 (93 tit.)] 
330 |a Graphene is a one-atom thick carbon sheet with unique combination of physical and mechanical properties promising for many applications. Bending rigidity of graphene is very small and that is why weak van der Waals forces can create secondary structures such as folds, scrolls, etc. Recently the authors offered a model of a chain with particles moving in a plane to simulate properties of such secondary structures. In the present work the model is modified to enable the study of structure and properties of graphene nanoribbon scrolls (GNS) around carbon nanotubes (CNT). With the help of this model possible equilibrium structures are found and their energies are compared. Particularly it is shown that relatively short graphene nanoribbons wrap CNT without a cavity, producing a dense structure. For nanoribbons with larger length there always appears a cavity between GNS and CNT. Then the temperature effect on the GNS-CNT complex is studied. It is found that the dense complexes at elevated temperatures undergo a phase transition to the states with a cavity. This transition is characterized by a sharp increase in the outer radius of GNS. This finding opens a way to design materials with a huge thermal expansion coefficient in a specific temperature range as well as temperature sensors with a great sensitivity. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Computational Materials Science 
463 |t Vol. 135  |v [P. 99–108]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a graphene nanoribbon 
610 1 |a carbon nanotube 
610 1 |a chain model 
610 1 |a van der Waals interaction 
610 1 |a thermal expansion 
610 1 |a графены 
610 1 |a углеродные нанотрубки 
610 1 |a ван-дер-ваальсо взаимодействие 
610 1 |a тепловые расширения 
701 1 |a Savin  |b A. V.  |g Aleksandr Vasiljevich 
701 1 |a Korznikova  |b E. A.  |g Elena Aleksandrovna 
701 1 |a Dmitriev  |b S. V.  |g Sergey Vladimirovich 
701 1 |a Soboleva  |b E. G.  |c physicist  |c Associate Professor of Yurga technological Institute of Tomsk Polytechnic University, Candidate of physical and mathematical Sciences  |f 1976-  |g Elvira Gomerovna  |3 (RuTPU)RU\TPU\pers\32994  |9 16839 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Юргинский технологический институт (филиал) (ЮТИ)  |b Кафедра сварочного производства (КСП)  |3 (RuTPU)RU\TPU\col\18891 
801 2 |a RU  |b 63413507  |c 20170919  |g RCR 
856 4 |u https://doi.org/10.1016/j.commatsci.2017.03.047 
942 |c CF