Numerical Simulation of Heat Transfer in a Closed Two-Phase Thermosiphon

Bibliographic Details
Parent link:Key Engineering Materials: Scientific Journal
Vol. 743 : High Technology: Research and Applications (HTRA 2016).— 2017.— [P. 449-453]
Main Author: Arkhipov V. Vladimir
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра теоретической и промышленной теплотехники (ТПТ)
Other Authors: Nee A. E. Aleksandr Eduardovich, Valieva Lily L.
Summary:Title screen
This paper presents the results of mathematical modelling of three–dimensional heat transfer in a closed two-phase thermosyphon taking into account phase transitions. Three-dimensional conduction equation was solved by means of the finite difference method (FDM). Locally one-dimensional scheme of Samarskiy was used to approximate the differential equations. The effect of the thermosyphon height and temperature of its bottom lid on the temperature difference in the vapor section was shown.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2017
Subjects:
Online Access:http://dx.doi.org/10.4028/www.scientific.net/KEM.743.449
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655498

MARC

LEADER 00000naa2a2200000 4500
001 655498
005 20250224161433.0
035 |a (RuTPU)RU\TPU\network\21627 
035 |a RU\TPU\network\21621 
090 |a 655498 
100 |a 20170906d2017 k||y0rusy50 ba 
101 0 |a eng 
135 |a drgn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Numerical Simulation of Heat Transfer in a Closed Two-Phase Thermosiphon  |f V. Arkhipov, A. E. Nee, Lily Valieva 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a This paper presents the results of mathematical modelling of three–dimensional heat transfer in a closed two-phase thermosyphon taking into account phase transitions. Three-dimensional conduction equation was solved by means of the finite difference method (FDM). Locally one-dimensional scheme of Samarskiy was used to approximate the differential equations. The effect of the thermosyphon height and temperature of its bottom lid on the temperature difference in the vapor section was shown. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 1 |0 (RuTPU)RU\TPU\network\11477  |t Key Engineering Materials  |o Scientific Journal 
463 1 |0 (RuTPU)RU\TPU\network\21014  |t Vol. 743 : High Technology: Research and Applications (HTRA 2016)  |o The V International Science and Engineering Conference, Decembe 5-7, 2016, Tomsk, Russia  |o [proceedings]  |f National Research Tomsk Polytechnic University (TPU) ; eds. G. E. Osokin ; E. A. Kulinich  |v [P. 449-453]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a конденсация 
610 1 |a проводимость 
610 1 |a испарения 
610 1 |a математическое моделирование 
610 1 |a термосифоны 
610 1 |a condensation 
610 1 |a conduction 
610 1 |a evaporation 
610 1 |a mathematical modelling 
610 1 |a thermosyphon 
700 1 |a Arkhipov  |b V.  |g Vladimir 
701 1 |a Nee  |b A. E.  |c specialist in the field of thermal engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Sciences  |f 1990-  |g Aleksandr Eduardovich  |3 (RuTPU)RU\TPU\pers\35708  |9 18868 
701 1 |a Valieva  |b Lily  |g L. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра теоретической и промышленной теплотехники (ТПТ)  |3 (RuTPU)RU\TPU\col\18679 
801 2 |a RU  |b 63413507  |c 20170906  |g RCR 
856 4 |u http://dx.doi.org/10.4028/www.scientific.net/KEM.743.449 
942 |c CF