Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams
| Parent link: | International Journal of Non-Linear Mechanics Vol. 93.— 2017.— [P. 106-121] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , |
| Summary: | Title screen In the present part of the paper various problems of non-linear dynamics of nano-beams within the modified couple stress theory as well as the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson models are studied taking into account the geometric non-linearity. Different characteristics of the vibrational process, including Fourier spectra, wavelet spectra, phase portraits, Poincarй maps as well as the largest Lyapunov exponents, are studied for the same physical-geometric parameter with and without consideration of the size-dependent behaviour. Vibration graphs are constructed and analysed, and scenarios of transition from regular to chaotic vibrations are illustrated and discussed. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2017
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.ijnonlinmec.2017.03.006 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655445 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 655445 | ||
| 005 | 20250318141048.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\21574 | ||
| 035 | |a RU\TPU\network\16074 | ||
| 090 | |a 655445 | ||
| 100 | |a 20170905d2017 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drnn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams |f A. V. Krysko [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 22 tit.] | ||
| 330 | |a In the present part of the paper various problems of non-linear dynamics of nano-beams within the modified couple stress theory as well as the Bernoulli-Euler, Timoshenko, and Sheremetev-Pelekh-Reddy-Levinson models are studied taking into account the geometric non-linearity. Different characteristics of the vibrational process, including Fourier spectra, wavelet spectra, phase portraits, Poincarй maps as well as the largest Lyapunov exponents, are studied for the same physical-geometric parameter with and without consideration of the size-dependent behaviour. Vibration graphs are constructed and analysed, and scenarios of transition from regular to chaotic vibrations are illustrated and discussed. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 461 | |t International Journal of Non-Linear Mechanics | ||
| 463 | |t Vol. 93 |v [P. 106-121] |d 2017 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a vibrations | |
| 610 | 1 | |a лучи | |
| 610 | 1 | |a вибрации | |
| 610 | 1 | |a наномеханика | |
| 610 | 1 | |a хаотическая механика | |
| 701 | 1 | |a Krysko |b A. V. |c specialist in the field of Informatics and computer engineering |c programmer Tomsk Polytechnic University, Professor, doctor of physico-mathematical Sciences |f 1967- |g Anton Vadimovich |3 (RuTPU)RU\TPU\pers\36883 | |
| 701 | 1 | |a Awrejcewicz |b J. |g Jan | |
| 701 | 1 | |a Zhigalov |b M. V. |g Maksim | |
| 701 | 1 | |a Pavlov |b S. P. | |
| 701 | 1 | |a Krysko |b V. A. |g Vadim | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Институт кибернетики (ИК) |b Кафедра инженерной графики и промышленного дизайна (ИГПД) |b Научно-учебная лаборатория 3D моделирования (НУЛ 3DМ) |3 (RuTPU)RU\TPU\col\20373 |
| 801 | 2 | |a RU |b 63413507 |c 20170905 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.ijnonlinmec.2017.03.006 | |
| 942 | |c CF | ||