Temperature measurement in the trace of water droplet when heating by hot air

Bibliografiske detaljer
Parent link:Experimental Thermal and Fluid Science
Vol. 81.— 2017.— [P. 256-264]
Hovedforfatter: Kuznetsov G. V. Geny Vladimirovich
Corporate Authors: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра автоматизации теплоэнергетических процессов (АТП), Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Лаборатория моделирования процессов тепломассопереноса (ЛМПТ), Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра теоретической и промышленной теплотехники (ТПТ)
Andre forfattere: Strizhak P. A. Pavel Alexandrovich, Volkov R. S. Roman Sergeevich
Summary:Title screen
In this study, the temperature of a mixture of water vapor and air was measured behind the droplet, which is fixed in a hot air flow. The initial droplet radius varied from 1.3 mm to 1.7 mm. Air flow velocity was 2.5 m/s. The measurements were performed at a distance of 2 mm, 4 mm, and 8 mm from the back droplet surface. The initial air temperature varied in the range of 450-750 K. For the first time, the hypothesis was experimentally proved about significant reduction (from 10 K to 100 K) of gas temperature in the trace of the evaporating water droplet (even when the droplet size is less than 2 mm). The results explained the reasons for considerably different evaporation rates of water droplets during their motion in the form of an aerosol flow in a combustion zone. The study reported the sizes of the temperature trace of droplet, beyond which the temperature of the mixture of water vapor and air differed insignificantly (by less than 10 K) from the temperature of the air stream flowing around the droplet. The results of measuring the temperature of vapor/air mixture in the trace of the evaporating droplet proved the validity of the known models of high-temperature heating and evaporation of water droplets.
Режим доступа: по договору с организацией-держателем ресурса
Sprog:engelsk
Udgivet: 2017
Fag:
Online adgang:https://doi.org/10.1016/j.expthermflusci.2016.10.020
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655370

MARC

LEADER 00000naa0a2200000 4500
001 655370
005 20250318134034.0
035 |a (RuTPU)RU\TPU\network\21464 
035 |a RU\TPU\network\20292 
090 |a 655370 
100 |a 20170831d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Temperature measurement in the trace of water droplet when heating by hot air  |f G. V. Kuznetsov, P. A. Strizhak, R. S. Volkov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: p. 264 (23 tit.)] 
330 |a In this study, the temperature of a mixture of water vapor and air was measured behind the droplet, which is fixed in a hot air flow. The initial droplet radius varied from 1.3 mm to 1.7 mm. Air flow velocity was 2.5 m/s. The measurements were performed at a distance of 2 mm, 4 mm, and 8 mm from the back droplet surface. The initial air temperature varied in the range of 450-750 K. For the first time, the hypothesis was experimentally proved about significant reduction (from 10 K to 100 K) of gas temperature in the trace of the evaporating water droplet (even when the droplet size is less than 2 mm). The results explained the reasons for considerably different evaporation rates of water droplets during their motion in the form of an aerosol flow in a combustion zone. The study reported the sizes of the temperature trace of droplet, beyond which the temperature of the mixture of water vapor and air differed insignificantly (by less than 10 K) from the temperature of the air stream flowing around the droplet. The results of measuring the temperature of vapor/air mixture in the trace of the evaporating droplet proved the validity of the known models of high-temperature heating and evaporation of water droplets. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Experimental Thermal and Fluid Science 
463 |t Vol. 81  |v [P. 256-264]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a капли 
610 1 |a вода 
610 1 |a выпаривание 
610 1 |a высокотемпературные газы 
610 1 |a температура 
610 1 |a измерение 
610 1 |a water droplet 
610 1 |a trace 
610 1 |a evaporation 
610 1 |a high-temperature gases 
610 1 |a temperature measurement 
700 1 |a Kuznetsov  |b G. V.  |c Specialist in the field of heat power energy  |c Professor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences  |f 1949-  |g Geny Vladimirovich  |3 (RuTPU)RU\TPU\pers\31891  |9 15963 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
701 1 |a Volkov  |b R. S.  |c specialist in the field of power engineering  |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences  |f 1987-  |g Roman Sergeevich  |3 (RuTPU)RU\TPU\pers\33926  |9 17499 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра автоматизации теплоэнергетических процессов (АТП)  |3 (RuTPU)RU\TPU\col\18678 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Лаборатория моделирования процессов тепломассопереноса (ЛМПТ)  |3 (RuTPU)RU\TPU\col\19906 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра теоретической и промышленной теплотехники (ТПТ)  |3 (RuTPU)RU\TPU\col\18679 
801 2 |a RU  |b 63413507  |c 20170831  |g RCR 
856 4 |u https://doi.org/10.1016/j.expthermflusci.2016.10.020 
942 |c CF