Mathematical simulation of the forest fire thermal effect on root system fragments of coniferous tree
| Parent link: | MATEC Web of Conferences Vol. 110 : Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment (HMTTSC 2017).— 2017.— [01010, 5 p.] |
|---|---|
| Hlavní autor: | |
| Korporativní autor: | |
| Další autoři: | |
| Shrnutí: | Title screen We present the numerical simulation results of heat transfer in a layered structure of the root branch when exposed to a high temperature from a forest fire in this paper. The problem is solved by the method of finite differences in a cylindrical coordinate system using a one-dimensional formulation. Typical exposure times and temperatures in the forest fire front are considered. The temperature distributions are presented for the system “root fragment-soil-forest fuel-air”. We revealed the character of the temperature distribution and the depth of the soil layer heating to the values which are dangerous for the coniferous tree root system. |
| Jazyk: | angličtina |
| Vydáno: |
2017
|
| Témata: | |
| On-line přístup: | https://doi.org/10.1051/matecconf/201711001010 http://earchive.tpu.ru/handle/11683/42645 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655318 |
| Shrnutí: | Title screen We present the numerical simulation results of heat transfer in a layered structure of the root branch when exposed to a high temperature from a forest fire in this paper. The problem is solved by the method of finite differences in a cylindrical coordinate system using a one-dimensional formulation. Typical exposure times and temperatures in the forest fire front are considered. The temperature distributions are presented for the system “root fragment-soil-forest fuel-air”. We revealed the character of the temperature distribution and the depth of the soil layer heating to the values which are dangerous for the coniferous tree root system. |
|---|---|
| DOI: | 10.1051/matecconf/201711001010 |