Mathematic study of the rotor motion with a pendulum selfbalancing device

Bibliografske podrobnosti
Parent link:Journal of Physics: Conference Series
Vol. 744 : 13th International Conference on Motion and Vibration Control (MOVIC 2016) and the 12th International Conference on Recent Advances in Structural Dynamics (RASD 2016), 4-6 July 2016, Southampton, UK.— 2016.— [012157, 8 p.]
Glavni avtor: Ivkina O. P. Olga Petrovna
Corporate Authors: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра теоретической и прикладной механики (ТПМ), Национальный исследовательский Томский политехнический университет (ТПУ) Институт международного образования и языковой коммуникации (ИМОЯК) Кафедра междисциплинарная (МД)
Drugi avtorji: Ziyakaev G. R. Gregory Rakitovich, Pashkov E. N. Evgeny Nikolaevich
Izvleček:Title screen
The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ' parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation.
Jezik:angleščina
Izdano: 2016
Teme:
Online dostop:https://doi.org/10.1088/1742-6596/744/1/012157
Format: Elektronski Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655264

MARC

LEADER 00000naa0a2200000 4500
001 655264
005 20250911140855.0
035 |a (RuTPU)RU\TPU\network\21225 
035 |a RU\TPU\network\19935 
090 |a 655264 
100 |a 20170816d2016 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Mathematic study of the rotor motion with a pendulum selfbalancing device  |f O. P. Ivkina, G. R. Ziyakaev, E. N. Pashkov 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 6 tit.] 
330 |a The rotary machines used in manufacturing may become unbalanced leading to vibration. In some cases, the problem may be solved by installing self-balancing devices (SBDs). Certain factors, however, exhibit a pronounced effect on the efficiency of these devices. The objective of the research comprised of establishing the most beneficial spatial position of pendulums to minimize the necessary time to repair the rotor unbalance. The mathematical research of the motion of a rotor with pendulum SBDs in the situation of their misalignment was undertaken. This objective was achieved by using the Lagrange equations of the second type. The analysis identified limiting cases of location of the rotor unbalance vector and the vector of housing's unbalance relative to each other, as well as the minimum capacity of the pendulum. When determining pendulums ' parameters during the SBD design process, it is necessary to take into account the rotor unbalance and the unbalance of the machine body, which is caused by the misalignment of rotor axis and pendulum's axis of rotation. 
461 1 |t Journal of Physics: Conference Series 
463 1 |t Vol. 744 : 13th International Conference on Motion and Vibration Control (MOVIC 2016) and the 12th International Conference on Recent Advances in Structural Dynamics (RASD 2016), 4-6 July 2016, Southampton, UK  |v [012157, 8 p.]  |d 2016 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a ротор 
610 1 |a движение 
610 1 |a маятниковые устройства 
610 1 |a математические исследования 
700 1 |a Ivkina  |b O. P.  |g Olga Petrovna 
701 1 |a Ziyakaev  |b G. R.  |c specialist in the field of mechanical engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1975-  |g Gregory Rakitovich  |3 (RuTPU)RU\TPU\pers\31411  |9 15583 
701 1 |a Pashkov  |b E. N.  |c specialist in the field of mechanical engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1975-  |g Evgeny Nikolaevich  |3 (RuTPU)RU\TPU\pers\31410  |9 15582 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт физики высоких технологий (ИФВТ)  |b Кафедра теоретической и прикладной механики (ТПМ)  |3 (RuTPU)RU\TPU\col\18695 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт международного образования и языковой коммуникации (ИМОЯК)  |b Кафедра междисциплинарная (МД)  |3 (RuTPU)RU\TPU\col\19012 
801 2 |a RU  |b 63413507  |c 20170816  |g RCR 
856 4 |u https://doi.org/10.1088/1742-6596/744/1/012157 
942 |c CF