Decision Support Systems in Cardiology: A Systematic Review

Podrobná bibliografie
Parent link:Studies in Health Technology and Informatics
Vol. 237 : Wearable, Micro and Nano Technologies for Personalised Health (pHealth 2017).— 2017.— [P. 209 - 214]
Hlavní autor: Dudchenko A. V. Aleksey Vitaljevich
Korporativní autor: Национальный исследовательский Томский политехнический университет (ТПУ) Институт кибернетики (ИК) Кафедра программной инженерии (ПИ)
Další autoři: Kopanitsa G. D. Georgy Dmitrievich
Shrnutí:Title screen
The aim of this work was to identify the most common approaches used in the intelligent decision support systems employed in the diagnosis of cardiovascular diseases and identify accuracy of these systems. Forty-one relevant publications were included in the review using Scopus and Web of Science. Knowledge base and fuzzy logic and ANN is the most commonly used approach to diagnosis and prediction. The accuracy of the considered systems reaches 98%.
Режим доступа: по договору с организацией-держателем ресурса
Vydáno: 2017
Témata:
On-line přístup:http://ebooks.iospress.nl/volumearticle/46448
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655164
Popis
Shrnutí:Title screen
The aim of this work was to identify the most common approaches used in the intelligent decision support systems employed in the diagnosis of cardiovascular diseases and identify accuracy of these systems. Forty-one relevant publications were included in the review using Scopus and Web of Science. Knowledge base and fuzzy logic and ANN is the most commonly used approach to diagnosis and prediction. The accuracy of the considered systems reaches 98%.
Режим доступа: по договору с организацией-держателем ресурса