Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
Parent link: | Russian Physics Journal.— , 1965- Vol. 60, iss. 2.— 2017.— [P. 284–291] |
---|---|
Glavni avtor: | |
Drugi avtorji: | , |
Izvleček: | Title screen The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. Режим доступа: по договору с организацией-держателем ресурса |
Jezik: | angleščina |
Izdano: |
2017
|
Teme: | |
Online dostop: | http://dx.doi.org/10.1007/s11182-017-1073-z |
Format: | Elektronski Book Chapter |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=655097 |
MARC
LEADER | 00000naa0a2200000 4500 | ||
---|---|---|---|
001 | 655097 | ||
005 | 20250314105433.0 | ||
035 | |a (RuTPU)RU\TPU\network\20901 | ||
035 | |a RU\TPU\network\20146 | ||
090 | |a 655097 | ||
100 | |a 20170629d2017 k||y0rusy50 ba | ||
101 | 0 | |a eng | |
135 | |a drcn ---uucaa | ||
181 | 0 | |a i | |
182 | 0 | |a b | |
200 | 1 | |a Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity |f E. A. Levchenko, A. Yu. Trifonov, A. V. Shapovalov | |
203 | |a Text |c electronic | ||
300 | |a Title screen | ||
320 | |a [References: p. 290-291 (15 tit.)] | ||
330 | |a The one-dimensional Fokker–Planck–Kolmogorov equation with a special type of nonlocal quadratic nonlinearity is represented as a consistent system of differential equations, including a dynamical system describing the evolution of the moments of the unknown function. Lie symmetries are found for the consistent system using methods of classical group analysis. An example of an invariant-group solution obtained with an additional integral constraint imposed on the system is considered. | ||
333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
461 | |t Russian Physics Journal |d 1965- | ||
463 | |t Vol. 60, iss. 2 |v [P. 284–291] |d 2017 | ||
610 | 1 | |a электронный ресурс | |
610 | 1 | |a труды учёных ТПУ | |
610 | 1 | |a нелинейные уравнения | |
610 | 1 | |a уравнение Фоккера-Планка-Колмогорова | |
610 | 1 | |a последовательные системы | |
610 | 1 | |a инвариантные группы | |
610 | 1 | |a nonlinear Fokker–Planck–Kolmogorov equation | |
610 | 1 | |a consistent system | |
610 | 1 | |a Lie symmetries | |
610 | 1 | |a invariant-group solution | |
700 | 1 | |a Levchenko |b E. A. |c mathematician |c technician, Senior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences |f 1988- |g Evgeny Anatolievich |3 (RuTPU)RU\TPU\pers\31735 | |
701 | 1 | |a Trifonov |b A. Yu. |c physicist, mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1963- |g Andrey Yurievich |3 (RuTPU)RU\TPU\pers\30754 | |
701 | 1 | |a Shapovalov |b A. V. |c mathematician |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences |f 1949- |g Aleksandr Vasilyevich |3 (RuTPU)RU\TPU\pers\31734 | |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Физико-технический институт (ФТИ) |b Кафедра высшей математики и математической физики (ВММФ) |3 (RuTPU)RU\TPU\col\18727 |
712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Физико-технический институт (ФТИ) |b Кафедра высшей математики и математической физики (ВММФ) |b Международная лаборатория математической физики (МЛМФ) |3 (RuTPU)RU\TPU\col\21297 |
801 | 2 | |a RU |b 63413507 |c 20170629 |g RCR | |
856 | 4 | 0 | |u http://dx.doi.org/10.1007/s11182-017-1073-z |
942 | |c CF |