Siberian Arctic black carbon sources constrained by model and observation

Bibliographische Detailangaben
Parent link:Proceedings of the National Academy of Sciences of the United States of America
Vol. 114, № 7.— 2017.— [P. 1054-1061]
Weitere Verfasser: Winiger P. Patrik, Andersson A. August, Eckhardt S. Sabine, Stohl A. Andreas, Semiletov I. P. Igor Petrovich, Dudarev O. V. Oleg Viktorovich, Charkin A. Alexander, Shakhova N. E. Nataljya Evgenjevna, Klimont Z. Zbigniew, Heyes C. Chris, Gustafsson O. Orjan
Zusammenfassung:Title screen
Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng·m-3 to 302 ng·m-3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.
Режим доступа: по договору с организацией-держателем ресурса
Sprache:Englisch
Veröffentlicht: 2017
Schlagworte:
Online-Zugang:http://dx.doi.org/10.1073/pnas.1613401114
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654975

MARC

LEADER 00000naa0a2200000 4500
001 654975
005 20250313150558.0
035 |a (RuTPU)RU\TPU\network\20720 
090 |a 654975 
100 |a 20170531d2017 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Siberian Arctic black carbon sources constrained by model and observation  |f P. Winiger [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng·m-3 to 302 ng·m-3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Proceedings of the National Academy of Sciences of the United States of America 
463 |t Vol. 114, № 7  |v [P. 1054-1061]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Арктика 
610 1 |a радиационный баланс 
701 1 |a Winiger  |b P.  |g Patrik 
701 1 |a Andersson  |b A.  |g August 
701 1 |a Eckhardt  |b S.  |g Sabine 
701 1 |a Stohl  |b A.  |g Andreas 
701 1 |a Semiletov  |b I. P.  |c geographer  |c Professor of Tomsk Polytechnic University, doctor of geographical Sciences  |f 1955-  |g Igor Petrovich  |3 (RuTPU)RU\TPU\pers\34220 
701 1 |a Dudarev  |b O. V.  |c geologist  |c researcher of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences  |f 1955-  |g Oleg Viktorovich  |3 (RuTPU)RU\TPU\pers\35379 
701 1 |a Charkin  |b A.  |g Alexander 
701 1 |a Shakhova  |b N. E.  |c geologist  |c Professor of Tomsk Polytechnic University, doctor of geological-mineralogical Sciences  |f 1959-  |g Nataljya Evgenjevna  |3 (RuTPU)RU\TPU\pers\35374 
701 1 |a Klimont  |b Z.  |g Zbigniew 
701 1 |a Heyes  |b C.  |g Chris 
701 1 |a Gustafsson  |b O.  |g Orjan 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра геологии и разведки полезных ископаемых (ГРПИ)  |b Международная научно-образовательная лаборатория изучения углерода арктических морей (МНОЛ ИУАМ)  |3 (RuTPU)RU\TPU\col\20711 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт неразрушающего контроля (ИНК)  |b Международная научно-образовательная лаборатория неразрушающего контроля (МНОЛ НК)  |3 (RuTPU)RU\TPU\col\19961 
801 2 |a RU  |b 63413507  |c 20170531  |g RCR 
856 4 |u http://dx.doi.org/10.1073/pnas.1613401114 
942 |c CF