Sand-blasting treatment as a way to improve the adhesion strength of hydroxyapatite coating on titanium implant
| Parent link: | Journal of Physics: Conference Series Vol. 830 : Energy Fluxes and Radiation Effects 2016.— 2017.— [012109, 7 p.] |
|---|---|
| Korporace: | , , |
| Další autoři: | , , , , , , |
| Shrnutí: | Title screen In the current study, the effect of corundum particle sizes (50 and 250–320 [mu]m) used for sand–blasting on the structure, roughness, wettability, mechanical properties, and adhesion of radio frequency magnetron hydroxyapatite coating deposited on treated titanium substrate is studied. Morphology analysis revealed that pretreatment uniformly deforms the surface and induces the formation of pits, which size depends linearly on the grit size. The deposited coatings (Ca/P was in a range of 1.75-1.79) are homogeneous and repeat the relief of the substrate (mean roughness Ra is 1.9±0.1 (250–320 [mu]m) and 0.8±0.1 [mu]m (50 [mu]m)). Texture coefficient calculations revealed the predominant (002) growth texture of hydroxyapatite coatings. The resistance of the coating to plastic deformation and the surface hardening were significantly higher for coatings formed on sand blasted with particle size of 50 [mu]m. Scratch test have shown the significant improvement of wear resistance and lower friction coefficient of coatings for smoother samples. Dynamic contact angle measurements revealed the hydrophilic properties of the hydroxyapatite coating. Thus, sand–blasting of titanium with corundum powder having the size of 50 [mu]m prior to the deposition of RF magnetron coating is recommended for the medical applications intended to improve the bonding between the substrate and coating. |
| Jazyk: | angličtina |
| Vydáno: |
2017
|
| Edice: | Modification of materials with particle beams and plasma flows |
| Témata: | |
| On-line přístup: | http://dx.doi.org/10.1088/1742-6596/830/1/012109 http://earchive.tpu.ru/handle/11683/39492 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654932 |
MARC
| LEADER | 00000nla2a2200000 4500 | ||
|---|---|---|---|
| 001 | 654932 | ||
| 005 | 20250917134849.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\20648 | ||
| 035 | |a RU\TPU\network\20644 | ||
| 090 | |a 654932 | ||
| 100 | |a 20170529a2017 k y0engy50 ba | ||
| 101 | 0 | |a eng | |
| 105 | |a y z 100zy | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Sand-blasting treatment as a way to improve the adhesion strength of hydroxyapatite coating on titanium implant |f I. Yu. Grubova [et al.] | |
| 203 | |a Text |c electronic | ||
| 225 | 1 | |a Modification of materials with particle beams and plasma flows | |
| 300 | |a Title screen | ||
| 320 | |a [References: 11 tit.] | ||
| 330 | |a In the current study, the effect of corundum particle sizes (50 and 250–320 [mu]m) used for sand–blasting on the structure, roughness, wettability, mechanical properties, and adhesion of radio frequency magnetron hydroxyapatite coating deposited on treated titanium substrate is studied. Morphology analysis revealed that pretreatment uniformly deforms the surface and induces the formation of pits, which size depends linearly on the grit size. The deposited coatings (Ca/P was in a range of 1.75-1.79) are homogeneous and repeat the relief of the substrate (mean roughness Ra is 1.9±0.1 (250–320 [mu]m) and 0.8±0.1 [mu]m (50 [mu]m)). Texture coefficient calculations revealed the predominant (002) growth texture of hydroxyapatite coatings. The resistance of the coating to plastic deformation and the surface hardening were significantly higher for coatings formed on sand blasted with particle size of 50 [mu]m. Scratch test have shown the significant improvement of wear resistance and lower friction coefficient of coatings for smoother samples. Dynamic contact angle measurements revealed the hydrophilic properties of the hydroxyapatite coating. Thus, sand–blasting of titanium with corundum powder having the size of 50 [mu]m prior to the deposition of RF magnetron coating is recommended for the medical applications intended to improve the bonding between the substrate and coating. | ||
| 461 | 0 | |0 (RuTPU)RU\TPU\network\3526 |t Journal of Physics: Conference Series | |
| 463 | 0 | |0 (RuTPU)RU\TPU\network\20593 |t Vol. 830 : Energy Fluxes and Radiation Effects 2016 |o 5th International Congress, 2–7 October 2016, Tomsk, Russian Federation |o [materials] |f National Research Tomsk Polytechnic University (TPU) ; eds. M. V. Trigub G. E. Osokin ; A. S. Konovod |v [012109, 7 p.] |d 2017 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a пескоструйная обработка | |
| 610 | 1 | |a адгезионная прочность | |
| 610 | 1 | |a покрытия | |
| 610 | 1 | |a титановые имплантаты | |
| 610 | 1 | |a пластическая деформация | |
| 610 | 1 | |a упрочненные поверхности | |
| 610 | 1 | |a износостойкость | |
| 610 | 1 | |a титан | |
| 610 | 1 | |a порошки | |
| 610 | 1 | |a корунд | |
| 701 | 1 | |a Grubova |b I. Yu. |c physicist |c engineer-researcher of Tomsk Polytechnic Universit |f 1989- |g Irina Yurievna |3 (RuTPU)RU\TPU\pers\32674 |9 16573 | |
| 701 | 1 | |a Pryamushko |b T. S. |c physicist |c laboratory assistant of Tomsk Polytechnic University |f 1993- |g Tatiana Sergeevna |3 (RuTPU)RU\TPU\pers\34760 | |
| 701 | 1 | |a Surmeneva |b M. A. |c specialist in the field of material science |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist |f 1984- |g Maria Alexandrovna |3 (RuTPU)RU\TPU\pers\31894 |9 15966 | |
| 701 | 1 | |a Korneva |b O. S. |c physicist |c engineer of Tomsk Polytechnic University |f 1988- |g Olga Sergeevna |3 (RuTPU)RU\TPU\pers\37178 |9 20156 | |
| 701 | 1 | |a Epple |b M. | |
| 701 | 1 | |a Prymak |b O. | |
| 701 | 1 | |a Surmenev |b R. A. |c physicist |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences |f 1982- |g Roman Anatolievich |3 (RuTPU)RU\TPU\pers\31885 |9 15957 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Физико-технический институт (ФТИ) |b Кафедра теоретической и экспериментальной физики (ТиЭФ) |b Центр технологий (ЦТ) |3 (RuTPU)RU\TPU\col\20620 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Физико-технический институт (ФТИ) |b Кафедра общей физики (ОФ) |3 (RuTPU)RU\TPU\col\18734 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет (ТПУ) |b Физико-технический институт (ФТИ) |b Лаборатория № 22 |3 (RuTPU)RU\TPU\col\19225 |
| 801 | 2 | |a RU |b 63413507 |c 20170620 |g RCR | |
| 856 | 4 | |u http://dx.doi.org/10.1088/1742-6596/830/1/012109 | |
| 856 | 4 | |u http://earchive.tpu.ru/handle/11683/39492 | |
| 942 | |c CF | ||