Monitoring and Quality Control of Diesel Fraction Production Process

Bibliographic Details
Parent link:IOP Conference Series: Materials Science and Engineering
Vol. 189 : Modern Technologies for Non-Destructive Testing.— 2017.— [012002, 5 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра химической технологии топлива и химической кибернетики (ХТТ)
Other Authors: Frantsina E. V. Evgeniya Vladimirovna, Belinskaya N. S. Natalia Sergeevna, Lutsenko A. S., Popova N. V.
Summary:Title screen
In this work the mathematical model of diesel fraction and atmospheric gasoil catalytic dewaxing process has been developed. Also the pattern of applying the created model to solving such problems as monitoring and quality control of diesel fraction production in the catalytic dewaxing process. It has been represented that to meet such challenges, the model should take into consideration thermodynamic and kinetic laws of hydrocarbon conversion on the catalyst surface, and instability factors that are specified by catalyst deactivation. The developed model allows controlling the quality of obtained diesel fraction depending on feed and temperature regime in the reactor. The value of model calculation absolute error does not exceed 2%, which corroborates the adequacy of the model to actual process. The computations using the model have shown that to provide the desired product yield (not less than 40% wt. of overall yield of the unit products) of programmed quality (cold filtering plugging point not higher than minus 34°C for winter diesel fuels and not lower than minus 40°C for arctic ones) at long-time catalyst operation (during 4 years), it is necessary to sustain the reactor temperature at the average level of 19°C higher than when working with fresh catalyst. This must be done to compensate catalyst activity loss due to its deactivation.
Language:English
Published: 2017
Subjects:
Online Access:http://dx.doi.org/10.1088/1757-899X/189/1/012002
http://earchive.tpu.ru/handle/11683/38498
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654801

MARC

LEADER 00000nla2a2200000 4500
001 654801
005 20231227162209.0
035 |a (RuTPU)RU\TPU\network\20488 
035 |a RU\TPU\network\19405 
090 |a 654801 
100 |a 20170523a2017 k y0engy50 ba 
101 0 |a eng 
105 |a y z 100zy 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Monitoring and Quality Control of Diesel Fraction Production Process  |f E. V. Frantsina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 14 tit.] 
330 |a In this work the mathematical model of diesel fraction and atmospheric gasoil catalytic dewaxing process has been developed. Also the pattern of applying the created model to solving such problems as monitoring and quality control of diesel fraction production in the catalytic dewaxing process. It has been represented that to meet such challenges, the model should take into consideration thermodynamic and kinetic laws of hydrocarbon conversion on the catalyst surface, and instability factors that are specified by catalyst deactivation. The developed model allows controlling the quality of obtained diesel fraction depending on feed and temperature regime in the reactor. The value of model calculation absolute error does not exceed 2%, which corroborates the adequacy of the model to actual process. The computations using the model have shown that to provide the desired product yield (not less than 40% wt. of overall yield of the unit products) of programmed quality (cold filtering plugging point not higher than minus 34°C for winter diesel fuels and not lower than minus 40°C for arctic ones) at long-time catalyst operation (during 4 years), it is necessary to sustain the reactor temperature at the average level of 19°C higher than when working with fresh catalyst. This must be done to compensate catalyst activity loss due to its deactivation. 
461 0 |0 (RuTPU)RU\TPU\network\2008  |t IOP Conference Series: Materials Science and Engineering 
463 0 |0 (RuTPU)RU\TPU\network\20484  |t Vol. 189 : Modern Technologies for Non-Destructive Testing  |o 5th International Conference, 3–8 October 2016, Tomsk, Russian Federation  |o [proceedings]  |v [012002, 5 p.]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a контроль качества 
610 1 |a процессы 
610 1 |a производство 
610 1 |a дизельные фракции 
610 1 |a математические модели 
610 1 |a депарафинизация 
610 1 |a термодинамические закономерности 
610 1 |a кинетические закономерности 
610 1 |a катализаторы 
701 1 |a Frantsina  |b E. V.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Evgeniya Vladimirovna  |3 (RuTPU)RU\TPU\pers\32193  |9 16193 
701 1 |a Belinskaya  |b N. S.  |c chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Sciences  |f 1989-  |g Natalia Sergeevna  |3 (RuTPU)RU\TPU\pers\31267  |9 15445 
701 1 |a Lutsenko  |b A. S. 
701 1 |a Popova  |b N. V. 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра химической технологии топлива и химической кибернетики (ХТТ)  |3 (RuTPU)RU\TPU\col\18665 
801 2 |a RU  |b 63413507  |c 20170525  |g RCR 
856 4 |u http://dx.doi.org/10.1088/1757-899X/189/1/012002 
856 4 |u http://earchive.tpu.ru/handle/11683/38498 
942 |c CF