Increasing the Selectivity of Synthesis Stages for Linear Alkyl Benzenes

গ্রন্থ-পঞ্জীর বিবরন
Parent link:Current Organic Synthesis.— , 2004-
Vol. 14, iss. 3.— 2017.— [P. 342-352]
সংস্থা লেখক: Национальный исследовательский Томский политехнический университет (ТПУ) Институт природных ресурсов (ИПР) Кафедра химической технологии топлива и химической кибернетики (ХТТ)
অন্যান্য লেখক: Ivanchina E. D. Emilia Dmitrievna, Ivashkina E. N. Elena Nikolaevna, Frantsina E. V. Evgeniya Vladimirovna, Dolganova I. O. Irena Olegovna, Ivanov S. Yu. Stanislav Yurjevich
সংক্ষিপ্ত:Title screen
Background: Starting from the mid-20th century, synthetic detergents produced from petrochemical raw materials have become more and more widely used and in many cases have better cleaning characteristics than natural soap.Objective: The purpose of this work was to reveal physical and chemical regularities of C9–C14 hydrocarbons transformations and to increase the selectivity of the steps of synthesis of highly biodegradable linear alkylbenzenes.Method: Based on the thermodynamic analysis performed with use of quantum-chemical modeling, the study has shown how the structure of hydrocarbons affects their properties and reactivity.Results: With use of the results of the mathematical modeling of the main steps of synthesis of linear alkylbenzenes, it was shown that the selectivity of the process can be improved by suppressing the catalyst deactivation by coke during dehydrogenation of alkanes to alkenes.Conclusion: This can be achieved by reducing the hydrogen-rich gas circulation ratio while increasing the H2O supply to the reactor. The stemming decrease in the concentration of dienes in the feedstock allows us to reduce the HF flow rate to benzene alkylation with alkenes.
Режим доступа: по договору с организацией-держателем ресурса
ভাষা:ইংরেজি
প্রকাশিত: 2017
বিষয়গুলি:
অনলাইন ব্যবহার করুন:https://doi.org/10.2174/1570179413666161031120623
বিন্যাস: বৈদ্যুতিক গ্রন্থের অধ্যায়
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654768

MARC

LEADER 00000naa0a2200000 4500
001 654768
005 20250313100222.0
035 |a (RuTPU)RU\TPU\network\20455 
035 |a RU\TPU\network\20250 
090 |a 654768 
100 |a 20170519d2017 k||y0rusy50 ba 
101 0 |a eng 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Increasing the Selectivity of Synthesis Stages for Linear Alkyl Benzenes  |f E. D. Ivanchina [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a Background: Starting from the mid-20th century, synthetic detergents produced from petrochemical raw materials have become more and more widely used and in many cases have better cleaning characteristics than natural soap.Objective: The purpose of this work was to reveal physical and chemical regularities of C9–C14 hydrocarbons transformations and to increase the selectivity of the steps of synthesis of highly biodegradable linear alkylbenzenes.Method: Based on the thermodynamic analysis performed with use of quantum-chemical modeling, the study has shown how the structure of hydrocarbons affects their properties and reactivity.Results: With use of the results of the mathematical modeling of the main steps of synthesis of linear alkylbenzenes, it was shown that the selectivity of the process can be improved by suppressing the catalyst deactivation by coke during dehydrogenation of alkanes to alkenes.Conclusion: This can be achieved by reducing the hydrogen-rich gas circulation ratio while increasing the H2O supply to the reactor. The stemming decrease in the concentration of dienes in the feedstock allows us to reduce the HF flow rate to benzene alkylation with alkenes. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Current Organic Synthesis  |d 2004- 
463 |t Vol. 14, iss. 3  |v [P. 342-352]  |d 2017 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a дегидрирование 
610 1 |a алкилирование 
610 1 |a линейные алкилбензолы 
610 1 |a детергенты 
610 1 |a квантово-химические методы 
610 1 |a квантово-химические расчеты 
610 1 |a термодинамика 
610 1 |a моделирование 
610 1 |a водород 
610 1 |a dehydrogenation 
610 1 |a alkylation 
610 1 |a linear alkylbenzenes 
610 1 |a detergents 
610 1 |a quantum-chemical calculation methods 
610 1 |a thermodynamics 
610 1 |a modeling 
610 1 |a hydrogen 
701 1 |a Ivanchina  |b E. D.  |c chemist  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1951-  |g Emilia Dmitrievna  |3 (RuTPU)RU\TPU\pers\31274 
701 1 |a Ivashkina  |b E. N.  |c Chemical Engineer  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1983-  |g Elena Nikolaevna  |3 (RuTPU)RU\TPU\pers\31275  |9 15453 
701 1 |a Frantsina  |b E. V.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Evgeniya Vladimirovna  |3 (RuTPU)RU\TPU\pers\32193  |9 16193 
701 1 |a Dolganova  |b I. O.  |c chemist  |c Associate Scientist of Tomsk Polytechnic University, postgraduate student, candidate of technical Sciences  |f 1988-  |g Irena Olegovna  |3 (RuTPU)RU\TPU\pers\31271  |9 15449 
701 1 |a Ivanov  |b S. Yu.  |g Stanislav Yurjevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Институт природных ресурсов (ИПР)  |b Кафедра химической технологии топлива и химической кибернетики (ХТТ)  |3 (RuTPU)RU\TPU\col\18665 
801 2 |a RU  |b 63413507  |c 20170519  |g RCR 
856 4 |u https://doi.org/10.2174/1570179413666161031120623 
942 |c CF