The ignition parameters of the coal-water slurry droplets at the different methods of injection into the hot oxidant flow

Bibliografische gegevens
Parent link:Applied Thermal Engineering
Vol. 107.— 2016.— [P. 10–20]
Hoofdauteur: Vershinina K. Yu. Kseniya Yurievna
Coauteur: Национальный исследовательский Томский политехнический университет (ТПУ) Энергетический институт (ЭНИН) Кафедра автоматизации теплоэнергетических процессов (АТП)
Andere auteurs: Egorov R. I. Roman Igorevich, Strizhak P. A. Pavel Alexandrovich
Samenvatting:Title screen
Two different experimental approaches were realized for investigations of integral characteristics of single droplet ignition of coal-water slurry containing petrochemicals (CWSP) inside the hot flow of the gas oxidant. At first, the droplet was fixed inside the flow by special holder and the second way is free injection of the soaring droplet into the volume of combustion chamber. Research reports an experimental estimation of influence of material holder on ignition characteristics for typical CWSP. This is important, since many researchers use various holders (the ceramic rod, thermocouple junction, metal wire) when inserting droplets of coal-water slurry (CWS) and CWSP into the combustion chamber. There were three types of the droplet holders: the junction of the high-speed thermocouple, metallic wire and the ceramic rod. The basic components of the CWSP were filter-cake (the coal processing waste), the used turbine oil, the plasticizer (wetting agent) and water. Initial droplet radius was 0.5–1 mm, and the temperature and the oxidant flow velocity were 400–1000 K and 0.5–5 m/s correspondingly. The ignition delays and the combustion times for the fuel droplets together with minimal temperatures of the stable ignition (with further combustion) were defined. Comparison of parameters of the flying droplet ignition with corresponding values for droplets that were fixed by holder was done. Soaring droplets have smaller ignition delay times (for 7–25%) relative to the case of droplet fixed inside the oxidant flow by holder (when the all rest parameters are similar). Influence of the holder material onto the values of times of ignition delay and combustion become essentially weaker with oxidant temperature growth. The obtained numerical results show the limitations and advances of the two approaches for laboratory investigations of the CWSP ignition and combustion.
Режим доступа: по договору с организацией-держателем ресурса
Taal:Engels
Gepubliceerd in: 2016
Onderwerpen:
Online toegang:https://doi.org/10.1016/j.applthermaleng.2016.06.156
Formaat: Elektronisch Hoofdstuk
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654652

MARC

LEADER 00000naa0a2200000 4500
001 654652
005 20250312160020.0
035 |a (RuTPU)RU\TPU\network\20293 
090 |a 654652 
100 |a 20170511d2016 k||y0rusy50 ba 
101 1 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a The ignition parameters of the coal-water slurry droplets at the different methods of injection into the hot oxidant flow  |f K. Yu. Vershinina, R. I. Egorov, P. A. Strizhak 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 51 tit.] 
330 |a Two different experimental approaches were realized for investigations of integral characteristics of single droplet ignition of coal-water slurry containing petrochemicals (CWSP) inside the hot flow of the gas oxidant. At first, the droplet was fixed inside the flow by special holder and the second way is free injection of the soaring droplet into the volume of combustion chamber. Research reports an experimental estimation of influence of material holder on ignition characteristics for typical CWSP. This is important, since many researchers use various holders (the ceramic rod, thermocouple junction, metal wire) when inserting droplets of coal-water slurry (CWS) and CWSP into the combustion chamber. There were three types of the droplet holders: the junction of the high-speed thermocouple, metallic wire and the ceramic rod. The basic components of the CWSP were filter-cake (the coal processing waste), the used turbine oil, the plasticizer (wetting agent) and water. Initial droplet radius was 0.5–1 mm, and the temperature and the oxidant flow velocity were 400–1000 K and 0.5–5 m/s correspondingly. The ignition delays and the combustion times for the fuel droplets together with minimal temperatures of the stable ignition (with further combustion) were defined. Comparison of parameters of the flying droplet ignition with corresponding values for droplets that were fixed by holder was done. Soaring droplets have smaller ignition delay times (for 7–25%) relative to the case of droplet fixed inside the oxidant flow by holder (when the all rest parameters are similar). Influence of the holder material onto the values of times of ignition delay and combustion become essentially weaker with oxidant temperature growth. The obtained numerical results show the limitations and advances of the two approaches for laboratory investigations of the CWSP ignition and combustion. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t Applied Thermal Engineering 
463 |t Vol. 107  |v [P. 10–20]  |d 2016 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
610 1 |a воспламенение 
610 1 |a водоугольное топливо 
610 1 |a капля 
610 1 |a зажигание 
610 1 |a отходы 
610 1 |a угольная промышленность 
700 1 |a Vershinina  |b K. Yu.  |c specialist in the field of heat and power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1992-  |g Kseniya Yurievna  |3 (RuTPU)RU\TPU\pers\33706  |9 17337 
701 1 |a Egorov  |b R. I.  |c specialist in the field of heat and power engineering  |c Researcher of Tomsk Polytechnic University, candidate of physical and mathematical sciences  |f 1980-  |g Roman Igorevich  |3 (RuTPU)RU\TPU\pers\36601  |9 19642 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |3 (RuTPU)RU\TPU\pers\30871  |9 15117 
712 0 2 |a Национальный исследовательский Томский политехнический университет (ТПУ)  |b Энергетический институт (ЭНИН)  |b Кафедра автоматизации теплоэнергетических процессов (АТП)  |3 (RuTPU)RU\TPU\col\18678 
801 2 |a RU  |b 63413507  |c 20170511  |g RCR 
856 4 |u https://doi.org/10.1016/j.applthermaleng.2016.06.156 
942 |c CF