Reduction of friction by normal oscillations. I. Influence of contact stiffness

Podrobná bibliografie
Parent link:Friction: Scientific Journal
Vol. 5, iss. 1.— 2017.— [P. 45–55]
Hlavní autor: Popov M. Mikhail
Korporativní autor: Национальный исследовательский Томский политехнический университет (ТПУ) Институт физики высоких технологий (ИФВТ) Кафедра физики высоких технологий в машиностроении (ФВТМ)
Další autoři: Popov V. L. Valentin Leonidovich, Popov N. V. Nikita Valentinovich
Shrnutí:Title screen
The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is lost during a part of the oscillation period, so that the sample starts to “jump”. It is shown that the macroscopic coefficient of friction is a function of only two dimensionless parameters—a dimensionless sliding velocity and dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we consider “stiff systems”, where the contact stiffness is small compared with the stiffness of the system. The role of the system stiffness will be studied in more detail in a separate paper.
Jazyk:angličtina
Vydáno: 2017
Témata:
On-line přístup:https://doi.org/10.1007/s40544-016-0136-4
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=654648

Podobné jednotky